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ABSTRACT 

 

IMBALANCED LEARNING TECHNIQUES: EXPERIMENTS ON NCAA 

COLLEGE BASKETBALL LEAGUE PLAYER STATISTICS DATASET 

 

 

 

Güler, Emir 
Master of Science, Statistics 

Supervisor : Prof. Dr. Barış Sürücü 
 
 

August 2022, 122 pages 

 

 

This study was conducted with the purpose of finding an answer to the question: 

“What are the state of art methods for imbalanced classification and which 

combinations of these methods yield best results in extremely imbalanced real-world 

data?” In order to accomplish the purpose, internal (algorithm-based) and external 

(sampling-based) imbalanced learning techniques were applied individually and in 

combination. The dataset used for the imbalanced classification task is National 

Collegiate Athletic Association (NCAA) Men’s Basketball League Player Statistics 

Data. The players’ draft status (whether the player drafted by any NBA Teams or 

not) was used as the target variable for binary classification. Minority : Majority ratio 

of the target variable is 3.39 : 96.61. F1 score was used as the main evaluation metric. 

It was found in the experiments that default parameters of sampling techniques do 

not work well with extreme imbalance. Optimum minority over majority ratio 

hyperparameters ranged between 0.07 to 0.11 which differs from the general advice 

and application where minority and majority class frequencies are matched which 

makes the ratio hyperparameter equal to 1. On the other hand, Cost -sensitive 

methods were combined with sampling methods and class weight hyperparameters 
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of cost-sensitive learning model which works optimally found as {class0: 1, class1: 

1}, {class0: 2, class1: 1} or {class0: 3, class1: 2} contrary to the general teaching of 

“if class ratio is 1:9, the cost-sensitive weight hyperparameter should be the inverse 

of the original ratio”. Lastly, probability threshold moving was applied to maximize 

F1 score. That way, 3 different methods in Imbalanced Learning were consolidated 

and better results were acquired compared to the single use of the state of art 

methods. Additionally, Monte Carlo simulation was applied to fortify and generalize 

the results obtained by real-world dataset. 

 

 

Keywords: Imbalanced Classification, Imbalanced Learning, Oversampling, Cost-

Sensitive, Simulation 
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ÖZ 

 

DENGESİZ VERİDE ÖĞRENME: NCAA KOLEJ BASKETBOL LİGİ 

OYUNCU İSTATİSTİKLERİ VERİ SETİ ÜZERİNDE UYGULAMALAR 

 

 

 

Güler, Emir 
Yüksek Lisans, İstatistik 

Tez Yöneticisi: Prof. Dr. Barış Sürücü 
 

 

 

Ağustos 2022, 122 sayfa 

 

Bu çalışma, “Dengesiz sınıflandırma için en güncel yöntemler nelerdir ve bu 

yöntemlerin hangi kombinasyonları aşırı dengesiz gerçek dünya verilerinde en iyi 

sonuçları verir?” sorusuna cevap bulmak amacıyla yapılmıştır. Amacı 

gerçekleştirmek için içsel (algoritma tabanlı) ve dışsal (örnekleme tabanlı) dengesiz 

öğrenme teknikleri ayrı ayrı ve birlikte uygulanmıştır. Dengesiz sınıflandırma görevi 

için kullanılan veri seti, National Collegiate Athletic Association (NCAA) Erkekler 

Basketbol Ligi Oyuncu İstatistikleri Verileridir. Oyuncuların draft durumu 

(oyuncunun herhangi bir NBA takımı tarafından draft edilip edilmediği) ikili 

sınıflandırma için hedef değişken olarak kullanılmıştır. Azınlık sınıf : Çoğunluk sınıf 

oranı 3.39 : 96.61'dir. Model performansı değerlendirme ölçütü olarak F1 skoru 

kullanılmıştır. Deneylerde, örnekleme tekniklerinin varsayılan 

hiperparametrelerinin aşırı dengesizlik durumunda iyi çalışmadığı bulunmuştur. 

Optimum azınlık/çoğunluk oranı hiperparametreleri 0.07 ile 0.11 arasında 

değişmiştir, bu da azınlık ve çoğunluk sınıfı frekanslarının eşitlendiği ve oran 

hiperparametresini 1'e eşit yapan genel tavsiyeden ve uygulamadan farklı olduğu 

saptanmıştır. Öte yandan, Maliyet duyarlı (cost-sensitive) yöntemler örnekleme 
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yöntemleriyle birleştirilmiş ve maliyete duyarlı öğrenme modelinin optimal olarak 

çalışan sınıf ağırlığı hiperparametreleri, “sınıf oranı 1:9 ise, maliyete duyarlı ağırlık 

hiperparametresi orijinal sınıf oranının tersi olmalıdır.” genel tavsiyesinden farklı 

olarak {class0: 1, class1: 1}, {class0: 2, class1: 1} veya {class0: 3, class1: 2} olarak 

bulunmuştur. Son olarak, F1 skorunu en üst düzeye çıkarmak için olasılık eşiğini 

değiştirme yöntemi uygulanmıştır. Bu şekilde, çalışmada dengesiz öğrenmedeki 3 

farklı yöntemi birleştirilmiş ve güncel yöntemlerin tek başına kullanımına kıyasla 

daha iyi sonuçlar elde edilmiştir. Bunlara ek olarak, gerçek dünya veri seti ile elde 

edilen sonuçları güçlendirmek ve genellemek adına Monte Carlo simülasyonu 

uygulanmıştır. 

 

Anahtar Kelimeler: Dengesiz Öğrenme, Dengesiz Sınıflandırma, Örnekleme, 

Maliyet Duyarlı, Simülasyon 
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CHAPTER 1   

1 INTRODUCTION  

In Machine Learning language, a classification problem refers that a researcher is 

trying to predict the class of a given observation via predictive models. These classes 

can be binary (e.g., success – failure) or multiclass (e.g., win – loss – draw). 

The number of observations that belong to each class is not always in equilibrium, it 

can vary for different datasets. These cases are called imbalanced classification. In 

these type of problems, the class that has the least amount of observat ions is called 

minority class, other class or classes are called majority class. Class imbalance can 

cause serious problems since almost all machine learning algorithms that is used for 

classification have the assumption of equal frequency distribution of classes. This 

results in classification errors especially for the minority class. Additionally, 

Minority class is what a researcher tries to predict in most of the cases (e.g., Fraud 

Detection, Churn Analysis). This fact amplifies the detrimental effects o f class 

imbalance. 

1.1 Classification in Machine Learning 

The data used for classification problems are composed by observations and class 

labels which are assigned to each observation. Classification process includes 

predicting a class for observations whose class labels are unknown.  

To accomplish a classification process input and output (i.e., class label) is required. 

This process can be exemplified as the following case of e-mail spam detection. In 

this case, input variables are the words used in an e-mail and the frequencies of each 

word, on the other hand, output variable is the predicted class label (i.e., spam, not 

spam). The number of classes is fixed if the problem is clearly stated as above. 
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Alternatively, one might want to find the probabilities of observations belonging a 

specific class.   

Kuhn and Johnson (2013) stated that both continuous and discrete prediction is 

generated by classification algorithms. Continuous prediction is mostly in 

probability form (i.e., predicted values range from 0 to 1 and they add up to 1). On 

the other hand, a discrete category prediction is derived which is needed to make a 

decision.  

In above e-mail spam filter example, the class labels are discrete (i.e., spam, not 

spam). If the predictive model derive that an e-mail is spam with the probability of 

0.51 and another e-mail that is considered as spam by the model has a 0.98  

probability of being a spam, discrete outcome will show only the class label which 

is “spam”. Because of this kind of situations, the researcher might also want to look 

at the probabilities each decision has, which will increase the confidence about the 

decision.  

A training dataset is required in order to build classification models. T raining dataset 

is collected from the sphere of the problem which is composed by input variables 

and output variable. The number of observations in the training data vary from 

problem to problem depending on the complexity of the problem at hand. For one 

problem it will suffice to have hundreds of examples, on the other hand another 

problem may require millions of examples. 

1.2 Imbalanced Classification and the Possible Causes of Class Imbalance 

When a classification modelling task is at hand, the ratio of occurrences of different 

class labels have a substantial effect over the performance of the model. The cases 

where the proportion of one or more class labels are lower than the other classes are 

called imbalanced cases. One can face an imbalanced case in any dataframe or 

application, therefore one should be cognizant of the requirements of the modeling 

these type of data (Kuhn & Johnson, 2013).  
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The general way of describing the class imbalances in a dataset is to use ratio. An 

example to this can be an imbalanced case where the minority class to majority class 

ratio is 2 to 98 (2:98). Another way of showing the class imbalance is using IR 

(Imbalance Ratio). IR simply means dividing majority class to minority class. For a 

1:100 scenario as per Figure the value for IR would be 100. Fernández et al. (2019) 

mentions that IR is not always an accurate measure of the complexity of the data.  

 

Figure 1.1 Scatter Plot of an Imbalanced Dataset which has 1:100 IR 

There are two main causes of class imbalance. One of them is sampling errors. For 

example, it can happen that the data were collected from a small geographical area 

or from a small portion of time (Brownlee, 2020). These can trigger a class 

imbalance. Sampling errors can be fixed by wielding improved sampling techniques. 

Second main cause of imbalance is the problem’s intrinsic dynamics itself. It might 

be that a class label naturally occurs seldomly compared to the other class or classes. 

For example, only a small portion of the basketball players in college league end up 

drafted into NBA, only a small portion of the customer actions in an online banking 

app is fraudulent, only a small portion of the patients has a rare lethal disease or oil-

spills are rarely happen.   
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The imbalance degree between classes vary, for one problem the imbalance might 

be a little skewed (e.g. 4:6), for another one there can be 1 example that belongs to 

the minority class for 100 examples that belongs to the majority class (1:100).  

Most modern-day applications of imbalanced classification focus on imbalance 

ratios that range between 1:4 and 1:100. Some of the real-world problems such as 

fraud detection might have imbalance ratios that range between 1:1000 and 1:5000. 

This introduce new hardships to classification process in general since everything 

must be tuned to such severe cases (Krawczyk, 2016). 

A slight imbalance usually does not cause a problem when approached as a standard 

classification problem, but more intense imbalanced cases should be treated with 

specialized techniques.  

Standard classification algorithms assume approximately similar distribution of 

observations between different class labels but for most of the real-world examples, 

the distributions are skewed. This causes a challenge toward learning algorithms 

since these algorithms will favor the majority class and in fact, the minority class has 

much higher importance (Krawczyk, 2016). 

1.3 Techniques Used to Tackle the Problem of Imbalanced Classification  

There are four main methods to solve the problem of imbalance in Machine 

Learning: 

1. Algorithm Level: These methods adapt the classification algorithm to favor the 

minority class. In order to accomplish this task, Thorough knowledge of both the 

problem domain and the classification algorithm itself is required. These methods 

are also named as internal methods. 

2. Data Level: These methods are used to eliminate the imbalance itself by using 

resampling techniques. When the data is balanced, the need of adaptation of the 
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classification algorithm end up being unnecessary. These methods are also called 

external methods. The focal point of this thesis is on data level methods.  

3. Cost-sensitive: These methods use both data level and algorithm level 

approaches. It adds costs to specific observations in data additionally it modifies the 

algorithm to assume higher costs of misclassification when a minority class instance 

predicted wrong. This renders the algorithm biased towards minority class. 

4. Ensemble based: These approaches use ensemble algorithms and one of the 

methods described above in combination. 

1.4 Aim of the Study 

Since most of the real world scenarios in classification contains imbalanced 

datasets of varying degrees and detecting or predicting the minority/rare class has 

the utmost importance, testing and finding best working techniques for extreme 

imbalance scenarios is the main focus of this study 
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CHAPTER 2   

2 LITERATURE REVIEW 

In classification predictive modeling, one wants to predict dependent variable Y by 

building a predictive function 1 2( , ,..., )pY f X X X=  using the training data 

 
1

,
n

i i i
x y

=
 (Branco et al., 2016).  In classification models, Y has binary or 

multiclass labels. If some of the class or classes are not represented equally compared 

to other class or classes, this predictive process is called imbalanced classification 

(Brownlee, 2020). 

He and Garcia, in their paper published in 2009 mentioned that any dataset which 

has uneven class distribution can be considered as an imbalanced dataset technically. 

But in the Machine Learning community, an imbalanced dataset referred to a 

significant or severe imbalance. Imbalance ratios of 1:100, 1:1000 or 1:10000 are 

not uncommon. Fernández et al. (2019) points out the reasons that can decrease the 

performance of a classifier: One being the intrinsic characteristics of the training 

dataset and the uneven class distribution. 

Class imbalance can happen due to the inherent characteristics of the problem 

domain. For example, fraudulent credit card activities are really rare compared to  the 

non-fraudulent credit card activities in real life. On the other hand, certain shortages 

in data collection (e.g. economic reasons, privacy) can also cause class imbalance 

(Chawla et al., 2004).    

Due to the fact that the class imbalance case is common in most domains of high 

importance (e.g. medical diagnosis, text analysis, oil spill detection) (Sun et al., 

2009) and most machine learning algorithms have a bias toward majority class when 

trained on an imbalanced training data and this is ignored some of the researchers 
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that focuses on solely on the learning process itself, a need of finding an optimum 

solution to the imbalance problem has arisen recently (Susan & Kumar, 2021). 

The first person who approached systematically to the problem of class imbalance 

and examined it as a problem topic itself is Japkowicz (2000). She proved in her 

study with synthetically created data that the sample size is not a significant factor 

for classification performance, but the imbalance degree is. She also compared the 

effectiveness of the various oversampling and undersampling methods over the 

performance of the classification performance and found out that all of the methods 

improved the performance classification significantly. 

Susan and Kumar (2021), found out in their review that out of three main techniques 

which are data-level (i.e. oversampling, undersampling or both), algorithm-level and 

cost-sensitive; data-level methods acquired best results overall. 

Cost-sensitive learning conflict higher penalty for misclassified minority class 

samples than misclassified majority class samples (Tayal et al., 2015).  

Jo and Japkowicz, in their paper published in 2004 imposed different costs (1.0 for 

minority, 0,1 for majority class) in order to mitigate a 1:9 imbalance.   

 Weiss and Provost (2001) showed in their study that the class distribution has an 

effect over the performance of the model. They applied different density thresholds 

for minority and majority classes. The ROC AUC performance metric performed 

better when the minority class density increased. 

Susan et al. (2021) used cost-sensitive learning approach to solve the skewed 

distribution of nodule and non-nodule lung pictures. They achieved better accuracy 

scores on their proposed model than other existing techniques. 

One of the most popular methods for class balancing is to use sampling methods 

which are comprised of undersampling, oversampling and combinations of both. 

One of the widely used undersampling method is Tomek Links method, which is 

introduced by Tomek (1976), finds pairs that belong different classes which has 

minimum distance, which are called Tomek Links, they are considered as a noise or 
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examples lay near the decision threshold. In order to balance the majority and 

minority classes, majority class is removed from the training data. 

Jianping and Inderjeet (2003) offered Near Miss undersampling method which has 

3 different versions. Version 2 performed best in their study alongside with random 

undersampling. 

There are methods that includes undersampling into learning process. For example, 

Liu et al. (2008) offered two new ensemble algorithms that exploits the missing 

information caused by undersampling. The algorithms are named as EasyEnsamble 

and BalanceCascade which are elaborated upon in Methodology part of this study.  

Biased Random Forests is another algorithm which was proposed by  Bader-El-Den 

et al. (2019). In this method, algorithm does not only learn from the original training 

data, but also from the derived data which contains datapoints which are considered 

as critical region.  

Dumpala et al. (2018) offered an approach which undersamples the majority class in 

a manner where dataset is transformed. Two samples from training data is combined 

under 4 clusters in accordance with the class labels (majority-majority, minority-

minority, majority-minority, minority-majority). In order to decrease the density of 

the majority class, majority-majority cluster modified by matching majority class of 

one sample with majority class examples of the other sample which are reduced to 

the number of minority class. 

(G. E. A. P. A. Batista et al., 2003) used combinations of oversampling and 

undersampling methods. One of them is SMOTE and Tomek Links. 
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CHAPTER 3   

3 METHODOLOGY 

The techniques introduced in the introduction chapter of the study are elaborated 

upon in this chapter. The chapter starts with evaluation metrics widely used in 

imbalanced learning and continues with the methods widely used for tackling the 

problem of imbalanced classification. 

3.1 Choosing the Right Evaluation Metric for Imbalanced Learning 

In Machine Learning world, there are some evaluation metrics often preferred by 

researchers. Most prevalent one is the “accuracy” and “error rate” metrics. The 

formula of the accuracy and error metrics are given below. 

 
Correct Predictions

Accuracy
Total Predictions

=  (3.1) 

 
Incorrect Predictions

Error Rate
Total Predictions

=  (3.2) 

Also, Error Rate is the complement of the Accuracy. 

 1Accuracy Error Rate= −  (3.3) 

There is another way which is often preferred by researchers for classification 

evaluation. The way is called confusion matrix. In this matrix, rows represent the 

actual classes. The columns express predicted classes. Each cell of this matrix shows 

the number of predictions made by the model for that intersection. An example of 

the confusion matrix that belong to a binary classification problem is given below. 
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Table 3.1 Confusion Matrix 

 Positive Prediction Negative Prediction 

Positive Class T rue Positive (TP) False Negative (FN) 

Negative Class False Positive (FP) T rue Negative (TN) 

 

In above confusion matrix, all cells have specific names (e.g. T rue Positive). In order 

to explain these terms in a simpler manner, assume that 0 is assigned for the negative 

class and 1 is assigned for the positive class. T rue Positive (TP) means the prediction 

label is positive (i.e. 1) and real life label of the observation is also positive in the 

dataset. False Negative (FN) means the prediction made by the model negative (i.e. 

0) and real life value for the observation is positive in the dataset. Similarly, False 

Positive (FP) means the predictions is Positive and real value for the same 

observation is negative. Lastly, True Negative (TN) means the prediction is negative 

and real value for the observation is also negative. 

Accuracy, Error Rate can be calculated from the confusion matrix as the following: 

 
TP TN

Accuracy
TP TN FP FN

+
=

+ + +
 (3.4) 

 
FP FN

Error Rate
TP TN FP FN

+
=

+ + +
 (3.5) 

Accuracy treats correct positive class predictions and correct negative class 

predictions equally. Which renders it not suitable for Imbalanced Classification 

scenarios.  

3.1.1 Failure of Accuracy in Imbalanced Learning 

Consider an imbalanced dataset whose imbalance ratio is 1:99. Which means each 

minority class example there are 99 majority class examples. Most of the algorithms 

used in machine learning assumes an even data distribution which means 50:50 ratio 
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for a binary classification problem. Also most of them has simple learning principles 

like having a tendency to predict majority class when faced with uneven class 

distributions. In the scenario of 1:99 class distribution, mainstream algorithms often 

predict only majority class labels. If a researcher use accuracy as an evaluation 

metric, he/she will attain 0.99 accuracy with the dataset described above. In standard 

conditions where class labels distributed equally, 0.99 accuracy is extremely good. 

If a naïve researcher with an imbalanced dataset achieved 0.99 accuracy on his 

predictive model, he would think he did a great job, but he would be completely 

misled by the wrong evaluation metric which is accuracy in this case.  

Since the accuracy does not separate different classes in terms of the number of 

correct predictions, it is not a proper way to evaluate models in imbalanced scenarios. 

(Fernández et al., 2018) 

3.1.2 Precision 

If we assign the name positive for minority class and also assign negative for 

majority class, Precision metric tells us the ratio of correct positive predictions to all 

positive predictions (i.e. T rue Positives plus False Positives). 

The formula for precision for a binary classification is below: 

 
TP

Precision
TP FP

=
+

 (3.6) 

The principle of the precision metric simply ignores false negative class predictions 

and minimizing the false positives (Brownlee, 2020). 

Consider an imbalanced classification scenario in which the dataset has 2:98 

imbalance with 10000 total observations. 9800 of them would be negative class and 

200 of them would be positive class. If a model predicts 220 observations as positive, 

40 of them is not true and 180 of them is true. In a situation like that, the Precision 

will be: 
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180

0,82
220

TP
Precision

TP FP
= = =

+
 (3.7) 

Higher the Precision, better quality of prediction the model has. 

Precision is a good metric to use for classification problems where we want to 

minimize the number of false positives. In other words, if it is costlier to predict a 

class label as positive when it belongs to the negative class compared to classifying 

a class label as negative when it belongs to the positive class, precision metric would 

make a great choice. 

  

3.1.3 Recall 

Recall metric is the ratio of correct positive predictions to all observations that 

belong to the positive class. In this way, recall can address the incorrectly classified 

positive class observations. 

Recall is typically used as a measure of how a classifier covers the minority class 

(He & Ma, 2013). 

For a binary classification problem, recall is calculated as below: 

 
TP

Recall
TP FN

=
+

 (3.8) 

For an imbalanced scenario in which the imbalance ratio is 3:97 and there are 10000 

total observations, which means 300 positive (minority) class examples and 9700 

negative (majority) class examples, the recall of a predictive model which predicts 

270 of the positive examples right and remaining 30 positive examples wrong would 

be: 

 
270

0,9
300

Recall = =  (3.9) 
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Higher the recall score, better the prediction quality the model has. 

Recall measure is a good option for the situations when we want to minimize the 

negative predictions which are false. If it is more important to minimize false 

negative predictions compared to false positive predictions, Recall would make a 

great choice of evaluation metric. 

3.1.4 F-score 

In imbalanced learning, the objective is increasing recall without decreasing 

prediction. Nonetheless, these goals has inherent contradictions. To be more precise, 

in order to increase recall, False Negative predictions should be minimize, which 

almost always comes with the cost of increased False Positives, increase in False 

Positive predictions automatically increase Precision (He & Ma, 2013). 

In Imbalanced Learning, neither recall nor precision covers the whole situation. One 

model can have terrible recall and still have excellent precision and vice versa.  

F-score combines these two measures in one measure. After finding both recall and 

precision, they can be combined as one under the name of F-score with the formula 

given below: 

 
2* *Precision Recall

F score
Precision Recall

− =
+

 (3.10) 

 

There are different names which are used in literature, for example F1-measure, F-

measure. 

F-score gives even importance to recall and precision metrics, also most common 

metric used for imbalanced learning (He & Ma, 2013). 

Consider an imbalanced dataset in which positive class to negative class ratio is 

1:100. There are 100 examples in the positive class and 9900 in the negative class. 
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A model predicted 150 positives and 90 of them is correct (T rue Positive), which 

means 10 positives are misclassified as negative (False Negatives) and 60 of the 

positive predictions are False Positives. In this case, F-score will be: 

 
90

0,6
90 60

TP
Precision

TP FP
= = =

+ +
 (3.11) 

 
90

0,9
100

TP
Recall

TP FN
= = =

+
 (3.12) 

By using Precision and Recall metrics, the F-score of the model will be: 

 
2* * 2*0,6*0,90

0,72
0,6 0,90

Precision Recall
F score

Precision Recall
− = = =

+ +
 (3.13) 

The model has poor Precision score and a good Recall, F-score helps to balance these 

metrics. 

3.1.5 Fbeta-Score 

F-score creates a balance between precision and recall as it is stated above. For some 

situations, minimizing false positives are the most important, on the other hand, 

minimizing false negatives are still important but less. In these situations, one would 

want to increase the importance of precision in the metric. The situation might be 

vice-versa, one might prioritize to minimize false negatives and at the same time, 

minimizing false positives also be important albeit not the most important. Fbeta-

score offers a solution to this by adding a parameter called  . The parameter will 

determine the balance between precision and recall. The calculation of Fbeta-score 

is given below: 

 
2

2

(1 )* *

*

Precision Recall
F

Precision Recall






+
=

+
 (3.14) 

The value of   determines the name of the metric. For example, 
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For 0,5 =  The metric is called F0,5-score, this version increases the importance 

of precision and decrease the importance of recall 

1 = , This version of the metric actually the classic F-score which is stated above, 

the metric also called F1-score, this version balances the Precision and Recall. 

2 =  This version of the metric is called F2-score, it amplifies the importance of 

Recall and reduce the importance of Precision. 

3.1.6 ROC Curves and ROC AUC 

ROC Curves 

ROC Curves are a popular way to define a binary classification model’s 

performance. Y axis of the plane on which ROC Curves lay is called “ True Positive 

Rate” another name for the metric Recall. The formula of the T rue Positive Rate is 

given below: 

 
True Positive

True Positive Rate
True Positive False Negative

=
+

 (3.15) 

 

X axis of the plane represents “False Positive Rate”. False Positive Rate is False 

Positive predictions divided by all negative examples in the data (i.e. False Positives 

+ T rue Negatives). The formula is given below 

 
False Positives

False Positive Rate
False Positives True Negatives

=
+

 (3.16) 

The plot actually shows accuracy of the positive class on y axis and error of negative 

class in x axis. As a result, the best scenario would be achieved through maximizing 

y axis (i.e. y=1) and minimizing x axis (i.e. x=0). 
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ROC Curves are created by applying new classification probability threshold values 

iteratively and recording T rue Positive Rates and False Positive Rates for each 

threshold value. Each recorded value represents a dot in the coordinate plane where 

y axis shows True Positive Rate and x axis shows False Positive Rate as stated above. 

These dots form a curve which starts form bottom left and ends at top right, also the 

peak of the curve leans towards the top left corner. 

A no skill model (i.e. predicts negative every time or predicts positive every time) 

will form a diagonal line from bottom left corner to top right corner. Any point that 

falls under this line would be considered worse than a no skill classifier. 

ROC Curve’s does not favor predictive models that compromise minority class for 

the performance over majority class. This makes ROC Curve’s very appealing for 

imbalanced learning (He & Ma, 2013). 

ROC AUC 

Comparing the performance of imbalanced learning models is hard just by looking 

at the ROC Curves. ROC AUC offers a solution to this. AUC stands for Area Under 

the Curve. ROC AUC value stretches from 0,00 to 1,00. The higher this metric is,  

the better for the classification model. ROC AUC being equal to 1,00 means perfect 

classifier. 

ROC AUC might be the most common metric used for comparing classification 

models (Brownlee, 2020). 

ROC AUC has shortcomings under the occasions of severe imbalance and the 

minority class has few examples in the data. With few examples, any misclassified 

example would make big differences on the T rue Positive Rate and T rue Negative 

Rate metrics which will lead big changes in ROC AUC. 
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3.1.7 Precision-Recall Curves and AUC 

Precision is a metric which shows the fraction of correct positive predictions out of 

all positive predictions. Recall is a metric is the fraction of how many positive class 

members predicted correctly out of all positive class members. These metrics helps 

a researcher to evaluate model performance over predicting minority class.  

Precision-Recall Curves (PR Curves) lay upon a coordinate plane where Precision is 

represented in the y axis and Recall is represented in x axis. 

A perfect skill model will appear on the top right corner of coordinate plane. Which 

represents the point where Precision is equal to 1 and also Recall is equal to 1. A 

good skilled models’ Precision-Recall Curve peak will lean towards top right spot. 

A model with no skill will be shown as a horizontal line on the plane and Precision 

will be equal to the ratio of minority class. 

ROC Curves considers both classes in its creation. On the other hand, Precision-

Recall Curves focuses only the minority class. For severely imbalanced cases, ROC 

curves can be misleading for this reason. 

For extreme imbalanced cases, ROC Curves might give misleadingly optimistic 

performance for predictive models, this is why Precision-Recall Curves are offered 

in such cases (Branco et al., 2016). 

Precision-Recall Curve AUC 

The Area Under the Precision-Recall Curve is a very similar concept with ROC 

AUC. It summarizes the Curve which is composed by multiple threshold values as 

one score. A perfect classification model would score 1,00 on Precision-Recall 

Curve AUC. 
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3.1.8 Probabilistic Score Evaluation Metrics 

For some classification cases, Researches might want to see the observations’ 

probabilities of belonging a specific class. In this type of problems, one has to use 

appropriate evaluation metrics. Most common metrics used are Log Loss Score and 

Brier Score. 

Log Loss Score 

Log loss is a function which is known to be used in training of Logistic Regression 

Algorithms. The formula for a binary classification problem can be represented as 

below. 

 ((1 )*log(1 ) *log( ))LogLoss y y y y= − − − +  (3.17) 

In above equation y means expected probability of belonging one class out of two. 

y means predicted probability of belonging corresponding class. 

For a set of predictions, we will have multiple log loss values. In order to summarize 

all these values the average of all log loss values is taken. 

 
1

1
* ((1 )*log(1 ) *log( ))

N

i ii i

i

AverageLogLoss y y y y
N =

= − − − +  (3.18) 

A score equal to 1 is perfect score for this metric. The closer the score to the 0 the 

better performance the model has. 

Brier Score 

Brier score simply means the Mean Squared Error for probabilistic scores and built  

for binary classification problems. Brier score can be computed as below: 

 
2

1

1
* ( )

N

i i

i

BrierScore y y
N =

= −  (3.19) 

Brier score takes values between 0 and 1. Perfect score is 0. The model performance 

gets better when Brier Score gets closer to the 0. 
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3.2 Cross Validation for Imbalanced Learning 

Model evaluation involves finding best data preparation method, best performing 

learning algorithm and tuning hyperparameters to increase the performance of the 

learning algorithm. In order to accomplish this task, two methods are mostly used. 

cross validation and train/test splits. 

T rain/test splits are effective if you have a large enough dataset which can represent 

the problem well. The required size of the data determined by the problem domain 

itself. Ideally, a train/test split should be 50/50, even though more imbalanced splits 

(e.g. 80/20 or 67/33) are more common (Brownlee, 2020). 

Most of the time, the dataset at hand is not sufficiently large to apply train/test splits 

effectively. Data sampling procedures should be implemented on these types of 

datasets. Most commonly used one is k-fold cross validation. 

k-fold cross validation process works as the following: Dataset is cut into k folds. k-

1 folds are used as training data and k th fold is used as test data. As expected, the 

procedure repeats itself for k times so each fold has opportunity to be used as a train 

and test set. 

k-fold cross validation fails for imbalanced datasets. The reason for this can be 

explained with a simple scenario. Assume that one has a dataset of imbalance with 

ratio of 1:99. One splits this data into k folds. Some folds end up not having any 

minority class examples. When these folds reach their turn to be used as test split, 

model will be evaluated as it should only predict the majority class. This definitely 

cause some evaluation problems. 

To solve this issue, most common practice is using strat ified sampling. Stratified 

sampling still keeps the randomness but each fold will keep the distribution of 

minority class to majority class. 
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3.3 Data Level Methods 

Most of the machine learning algorithms focus on the class distribution and 

concludes that minority class is not that important and develop a bias towards 

majority class. 

Since minority class is actually the focal point of the imbalanced classification 

process, this is a problem. In order to avoid this problem, the most common approach 

is using sampling methods. In this method, one simply samples from existing 

observations to balance the data distribution, so common machine learning 

algorithms can work fine. Otherwise the common machine learning algorithms can 

offer misleading results since most of the algorithms built with the assumption of 

even class distribution. 

The reasons behind why sampling methods are popular to solve imbalance issues are 

the following: The method is simple to understand and implement. After the data 

sampling is done and the data is transformed, common machine learning algorithms 

works fine.     

Rather than waiting from the model to take of the imbalance, one can try to eliminate 

the class imbalance. Going on this route dissolves the base problem of class 

imbalance in training. (Kuhn & Johnson, 2013) 

Sampling is employed only the training dataset, not for evaluation set (i.e. Test set). 

If one tries to evaluate a model that is trained with a sampled training set by using a 

sampled test set, the results will be misleadingly optimistic.  

There so many sampling methods one can apply and there is no “cure it all” one. 

Different sampling techniques respond different for chosen learning algorithm which 

makes things more complicated. 

Sampling techniques can be decreased into 3 main categories: Oversampling 

techniques, undersampling techniques, techniques combined. 
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3.3.1 Oversampling Techniques 

Random Oversampling 

One of the popular oversampling techniques is Random Oversampling, which is the 

easiest one to understand and implement. This method simply chooses currently 

existing examples from minority class with replacement and makes copies of them 

to increase the numbers of the minority class to reach equilibrium between minority 

and majority class frequencies. 

Random oversampling increases the time needed for building a classification model 

and also have a tendency to overfitting (He & Ma, 2013). 

Synthetic Minority Oversampling Technique (SMOTE) 

The technique is the most popular one in terms of oversampling techniques. The 

method choses one random minority class example and closest minority examples to 

that example are found. One of the close neighbors of the first chosen example is 

randomly chosen. Between these two examples, a line is drawn. On randomly chosen 

one point of this line a synthetic sample is created. 

Chawla et al. in a paper conducted in 2002 mentions that  previous literature shows 

that majority class undersampling yields better results compared to the oversampling 

of the minority class. Also, combining the oversampling and undersampling methods 

shows no improvement in terms of classification performance over using solely 

undersampling. Nevertheless, on these studies the oversampling only done by 

copying the minority class examples. SMOTE is a different method than this.  

The detailed process of SMOTE can be explained as the following steps: 

The input of the algorithm contains T which represents the number of examples in 

the minority class, N% represents the oversampling ratio, lastly, k represents the 

number of neighbors which are the nearest to the minority example. 

At the end of the process, ( /100)*N T  synthetic samples are created. 
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The process starts choosing a random example from the minority class T. Then k 

nearest neighbors of the chosen example are calculated. One of the k neighbors is 

chosen randomly and the distance between the minority example and the neighbor is 

calculated. On the line of closest distance is where the new synthetic sample is 

created. 

The basic formula for new synthetic samples is: 

 *Synthetic Sample r dif= +  (3.20) 

Here, Synthetic represents the synthetic data created. Sample means the minority 

class example, r means a random number and dif means the distance between the 

minority example and the neighbor randomly chosen for synthetic data creation.  

In the original paper of the Technique SMOTE, which is published in 2002, Chawla 

et al. mentions that SMOTE with an undersampling technique works better than plain 

undersampling with SMOTE. 

Borderline SMOTE 

There are some extensions to SMOTE, one of them is called Borderline SMOTE 

which focuses on the misclassified examples and create samples from these 

misclassified examples. 

The examples that lays nearby to decision boundaries are the most important ones 

since they are more susceptible to mispredictions (Han et al., 2005). 

For the reason above, Han et al. (2005) offered two new oversampling techniques 

called Borderline SMOTE1 and Borderline SMOTE2.  

Borderline SMOTE1 

Borderline SMOTE1 looks at all minority class examples and finds out the k-nearest 

neighbors of them (default value of k is 5 but different numbers for k can be tried). 

If all the neighbors of the minority class example belong to the majority class, this 

example will be deemed as noise and the process of Borderline SMOTE1 will not 
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continue for these examples. The focal point of the algorithm is the examples whose 

equal to or more than half number of neighbors belong to the majority class. These 

examples are at the stake of being misclassified by the classification algorithm. After 

that step, the detected examples’ nearest neighbors in minority class are found. The 

difference between these neighbors and the detected example calculated and then 

multiplied with a random number between 0 and 1. The end result is the location of 

the synthetic sample. 

Assume that the training dataset is called T , minority class examples in the training 

dataset is called P and majority class in the training dataset is called N. So, 

 1 2 1 2{ , ,... }, { , ,..., }pnum nnumP p p p N n n n= =  (3.21) 

In above equation pnum refers to the number of examples in the minority (i.e. 

positive) class and nnum refers to the majority (i.e. negative) class. SMOTE1 

algorithm steps are as described below: 

At the beginning of the process, for each ( 1, 2,..., )ip i pnum=  in P, m nearest 

neighbors are calculated. Among these nearest neighbors, the examples that belong 

to the majority class are referred as ' [0, ]m m  . 

Under the condition of 'm m= , each neighbor of the example ip  belongs to the 

majority class and ip  considered as noise and is not included in the following steps. 

Besides, if / 2 'm m m   the majority class neighbors are equally frequent or 

outnumbers to the minority class neighbors of ip . These examples are the ones that 

the process continue with because they are at the edge of misclassification and t hey 

construct a set called DANGER. Lastly, if 0 ' / 2m m  , these examples are not 

participated to the following steps since they are not in danger of misclassification. 

The set called DANGER is composed by borderline positive (i.e. minority) class 

members so, DANGER P  and: 

 1 2{ ' , ' ,... ' } 0dnumDANGER p p p dnum pnum=    (3.22) 
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The minority class k nearest neighbors are calculated for each 'ip  in DANGER. 

In the following step, *s dnum  examples are created synthetically ( [1, ]s k ). 

In order to achieve this, s neighbors are chosen from k positive class nearest 

neighbors of 'ip . This process is followed by difference calculation between s 

positive neighbors and the example 'ip DANGER . The differences denoted as  

( 1,2,..., )jdif j s= . Then, every jdif  is multiplied by a corresponding random 

number called ( 1,2,..., )jr j s=  which takes values between 0 and 1. The synthetic 

samples are created as a result of aforementioned progressive steps. The synthetic 

samples can be formulated as: 

 ' * , 1,2,...,j i j jsynthetic p r dif j s= + =  (3.23) 

The end result of repeating the process above for all 'ip DANGER  yields *s dnum

synthetic samples.  

This process creates synthetic data between borderline minority examples and their 

positive (i.e. minority) class examples which strengthen the minority examples on 

the borderline (Han et al., 2005). 

Borderline SMOTE2 

Borderline SMOTE2, in addition to generating new examples between minority class 

and its minority neighbors, it generates synthetic examples between the example and 

its nearest majority class example, the only difference is the random number used 

for generating the synthetic example is between 0 and 0.5 this time. This make sure 

the created sample is closer to the minority class. 

Borderline Oversampling 

This technique uses Support Vector Machines (SVM’s) algorithm. The method uses 

SVM to create a decision boundary then focuses on the minority examples that are 

close to the borderline because they are the ones in danger of misclassification. The 



 

 
27 

method also uses extrapolation method to increase the region of minority class where 

the nearest majority class neighbors of the minority instance are count for less than 

half of the total neighbors. This is a difference between this method and original 

SMOTE. Another difference between Borderline SMOTE and SMOTE original is 

the neighbors selected randomly to create synthetic samples in the original SMOTE 

but this method generates samples considering the order of the neighbors from first 

to .thk  

The step by step progress of the method is given below: 

The required inputs of the method can be described as: 

X: Training set  

N: Level of sampling (100, 200, … percent) 

K: represents the total number of nearest neighbors 

m: interpolation or extrapolation threshold value 

Following variables will be used for method description and it is useful to give them 

beforehand: 

SV+ : positive support vectors 

T: Required number of artificial samples 

amount: An array that is composed by the number of artificial samples to be 

generated corresponding to the positive examples in SV 

nn: An array that is composed by corresponding k nearest neighbors of minority 

(positive) class examples in SV +  

First step of the sample generating process of Borderline Oversampling is finding 

out the required number of synthetic samples, which is denoted by T. 

 ( /100)*| |T N X=  (3.24) 
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After that step, Positive support vectors ( SV + ) are calculated employing SVM 

algorithm. The amount variable is calculated by distributing T in an even fashion 

over SV + . Following that step, nn is calculated. 

For every example in SV + , which can be denoted as 
isv+ , m neares neighbors are 

detected. If the number of negative class examples are less than / 2m , amount[i] 

number of examples are created on the line that connects the isv+  and its k nearest 

neighbors (in an order that starts nearest neighbor to thk  nearest neighbor) by 

implementing the following formula: 

 ( [ ][ ])new i ix sv sv nn i j+ + += + −  (3.25) 

In above equation [ ][ ]nn i j  represents 
thj  nearest positive neighbor of isv+ .   is a 

random number and [0, 1]  . For other situations where the positive nearest 

neighbors outnumber the negative nearest neighbors (i.e. positive neighbors count 

more than m/2), following interpolation formula used to create synthetic examples 

as per original SMOTE algorithm: 

 ( [ ][ ] )new i ix sv nn i j sv+ + += + −  (3.26) 

End of the process, the final dataset newX  is: 

 { }new newX X x+=   (3.27) 

Adaptive Synthetic Sampling (ADASYN) 

ADASYN is another oversampling method which chooses examples to be 

oversampled by looking at their density in the space of features. If the density of an 

example low in an area, ADASYN chooses this example and creates synthetic 

samples from it. If the density is high for an example, the method opts not choose 

that specific example for sampling.    
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The main point of ADASYN is to use density distribution of the minority samples to 

decide how many synthetic samples will be created (He et al., 2008). 

He et al. (2008) mentions that ADASYN method contributes two things to imbalance 

classification problems. First one is to reducing the inherent bias that comes from 

the data imbalance, second one is to adaptively manipulate decision boundary in 

favor of “difficult to classify” type of examples. 

The algorithm of the ADASYN is described below: 

Assume a training dataset called 
trainD , which has m observations 

{ , }, 1,2,...,i ix y i m=  
ix  is an observation in the feature space with n dimensions 

called X, on the other hand, {1, 1}iy Y = − represents the class labels. The number 

of minority class examples are referred as 
minoritym  and the number of majority class 

examples are referred as majoritym . Hence, minority majoritym m  also 

minority majoritym m m+ =  

As the first step, the degree of imbalance is calculated: 

 /minority majorityd m m=  (3.28) 

Here (0,1]d . 

Define thd as the threshold of maximum imbalance ratio allowed, if thd d  then the 

number of required synthetic examples calculated as: 

 ( )*majority minorityG m m = −  (3.29) 

Above equation, [0, 1]   is the parameter of the aimed balance level of minority 

and majority classes. 1 =  represents a fully balanced dataset. 

For every ix  that belongs to the minority class, K nearest neighbors are calculated 

using Euclidean distance. Then the ratio referred as ir  is calculated as the following: 
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 / , 1,...,i i minorityr K i m=  =     (3.30) 

Above equation, i  represents the number of majority class examples in the K 

nearest neighbors of ix , Hence, [0, 1]ir  . 

ir  is normalized to derive the density distribution 
ir , 

 
1

/
minoritym

i i i

i

r r r
=

=   (3.31) 

In order to find out how many synthetic samples will be created for each ix , below 

formula is employed: 

 *i ig r G=  (3.32) 

In above equation, G represents the number of synthetic samples to be generated. 

ig  synthetic examples are created for each ix  according to the following procedure: 

The loop continues from 1 to ig : 

 Between K nearest neighbors of ix , one minority class neighbor zix  is 

chosen. 

 Synthetic sample is created by the following formula: 

 ( )*i i zi is x x x = + −  (3.33) 

Above equation, ( )zi ix x−  is a vector in feature space and   is a number randomly 

created and [0, 1]  

The loop ends. 
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3.3.2 Undersampling Methods 

Undersampling methods used for balancing the class distributions for imbalanced 

classification problems. Contrary to the oversampling methods which increase the 

density of the minority class via different sampling techniques, this method focuses 

on decreasing the minority class density in the training dataset. 

Even though undersampling methods can be used only by themselves for imbalanced 

classification Using undersampling methods along with oversampling methods 

usually yields better results than using solely undersampling or 

oversampling.(Brownlee, 2020) 

Undersampling methods can be examined under 2 branches: Methods that informs 

about which examples should be kept and methods that informs which examples to 

remove. 

Near Miss Method 

This method has three different versions. First version is Near Miss 1. In this version 

of the method the negative (i.e. majority class) examples are chosen whose average 

distances to the nearest 3 positive examples (i.e. minority class) are the smallest.  

The second version is Near Miss 2. In this version the negative examples are chosen 

whose average distance to the three furthest positive class examples are the smallest.  

Last version which is called Near Miss 3 chooses the negative class examples whose 

distances to the all positive examples are the smallest. 

Condensed Nearest Neighbor (CNN) Method 

This method aims to achieve a subset of training samples without losing any 

classification performance.  

(Hart, 1967) described the algorithm with below steps: 

The algorithm uses bins named STORE and GRABBAG. 
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At the beginning of the algorithm first example is chosen and put in the STORE. 

After that step second example is put into the STORE and Nearest Neighbor 

algorithm applied. If the second example is classified correctly, it is then placed in 

GRABBAG otherwise it is placed in the STORE. 

The process continues until the last example in the training set is classified using the 

examples in the STORE. Again, if the example is classified correctly, it is placed in 

the GRABBAG, otherwise it is placed in STORE. 

After the whole training dataset is passed through once, the aforementioned process 

continues with the examples in GRABBAG. 

The loop continues unless one of the two following conditions are met: 

1. All examples in the GRABBAG are placed into the STORE. This means the 

final subset is equal to the dataset at the beginning of the process.  

2. All examples in the GRABBAG iterated and no transfers happened into the 

STORE. 

The examples in the STORE is the new training dataset and the examples in the 

GRABBAG is discarded. 

 

Tomek Links Method 

Tomek Links Undersampling method chooses examples which are both nearest 

neighbors and have different class labels. After detection the majority class 

observation is deleted. The idea behind is that these kind of observations makes hard 

to set a decision boundary. Algorithm works as following: 

Consider two observations in a training dataset which are referred as iO  and jO . 

These two examples belong to the different class labels. Also, ( , )i jd O O  represents 

the distance between two observations. If there are no other example aO  where 

( , ) ( , )i a i jd O O d O O  or ( , ) ( , )j a i jd O O d O O , iO  and jO  are called Tomek 

Link. If two examples are Tomek Link, either these examples are a noise, or they are 



 

 
33 

borderline examples. Tomek links as an Undersampling technique removes only the 

majority class observation from the training data. Tomek links method is used as a 

data cleaning method too. In this version of usage, both minority and majority class 

examples are removed. 

Edited Nearest Neighbors (ENN) Method 

ENN is another undersampling method which implements 3 nearest neighbor rule to 

detect misclassified samples. The detected majority class samples that are 

misclassified end up being deleted which reduced the density of the majority class 

examples in the training data. Alternatively, the method can be applied on minority 

class too. In this case, the minority class examples which are misclassified by its 3 

nearest neighbors are detected first. Then, the majority class examples in these three 

neighbors are deleted from the training data. This method is offered by Wilson in his 

paper which is publised in 1972. 

One Sided Selection Method (OSS) 

This method is a combination of CNN and Tomek Links. The method is proposed 

by Kubat and Matwin, in the paper published in 1972. The method first applies 

Tomek Links algorithm to reduce the borderline ambiguous majority examples. Then 

CNN algorithm applied in purpose of reducing the density of the majority class 

without hurting the classification performance. 

Neighborhood Cleaning Rule (NCR) 

This method combines CNN method with ENN method.  

Laurikkala (2001) who is the person that propose the NCR mentions that the major 

downside of the OSS method is that the CNN has a tendency to add noisy examples 

to the training dataset. The classification performance does not only depend on the 

class distribution, details like noise is also important. In order to decrease the noise, 

the method employs ENN method in combination with CNN method. 

The algorithm works as following: 
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1. The training dataset T is split into Positive class (P) and Negative Classes 

(N). 

2. Using ENN algorithm, the noisy data is detected. The noisy data points 

which belongs to the Negative classes (N) is placed into a set called 1A . 

3. For each negative class iN  in N: 

If ix N  belongs 3-NN of misclassified y value that belongs to the Positive 

Class (P) and | | 0.5 * | |iN P : 

The example x will be added to a set called 2A . 

4. Final version of the training data will be 1 2( )finalT T A A= −   

3.3.3 Oversampling and Undersampling Combined 

Oversampling algorithms creates synthetic data examples to increase the density of 

the minority class and undersampling methods delete examples from majority class 

to decrease the density of the majority class. Main methods that belong to the 

oversampling and undersampling categories are mentioned above. These methods 

can be implemented individually with success. However, using a combination of 

these methods can yield better results. (Brownlee, 2020). 

The possible combinations can be listed starting from the most naïve ones: Random 

undersampling and random oversampling. Different ratios for the two techniques can 

be defined. For example, an imbalanced dataset with the imbalance ratio of 1:100 

can be oversampled until the minority to majority class ratio becomes 20:80 and 

following this step by applying an undersampling method to make the distribution 

completely balanced (i.e. 50:50). 

One of the most popular oversampling method is called SMOTE. The method is 

proposed by Chawla et al. (2002) and in the paper they proposed using SMOTE with 

an undersampling technique. 
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SMOTE can be combined with a variety of undersampling methods, SMOTE – 

Random Undersampling is one of the ways to do it. 

On the other hand, there are some techniques that are proven to work well. The paper 

of Batista, Gustavo et al. (2016) has good method combinations. Some of them are: 

Combining SMOTE with Tomek Links method, combining SMOTE with ENN, 

combining CNN and Tomek links. 

3.4 Cost-Sensitive Methods 

Most classification algorithms assume that, the misclassification of the positive class 

is the same with misclassification of the negative class. This is not the case for most 

real world problem domains. (Thai-Nghe et al., 2010) 

The example that a cancer patient (positive class) is diagnosed as non-cancer (false 

negative) is a much bigger problem than a non-cancer patient (negative class) is 

diagnosed as a cancer patient (false positive). Similarly, if a terrorist that carries a 

bomb belong to positive class, it is much of a bigger problem to misclassify the 

positive class example and let the terrorist walk away than misclassifying an innocent 

person (negative person) and search him/her (Sammut & Webb, 2010).  

3.4.1 Cost-Sensitive (Weighted) Logistic Regression 

Logistic Regression algorithm is a great algorithm for classification tasks. As for the 

other well-known classification algorithms, it does not work at its best when there is 

an imbalance between class labels. The base idea of finding the best suited logistic 

regression model is to minimize the log loss function. The algorithm is given below. 

 
1

min (log( )* log(1 )*(1 ))
n

i i i i

i

yhat y yhat y
=

− + − −  (3.34) 

The above algorithm iteratively changes the coefficients until it finds the minimum 

log loss function. The above loss function gives equal weights to classes. Different 
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weights can be assigned for classes in order to mitigate the class imbalance effect. 

The above formula can be modified into a weighted log loss function as below. 

 

  (3.35) 

High weight value means high importance and require more update on the 

coefficients. Low weight values referred as less importance and cause less 

modifications over the coefficients. 

Three options of action are available for determining the class weights. First one is 

asking an expert of the problem domain. Second one is using hyperparameter tuning 

in order to find what works best for the specific data at hand. Last one is using what 

works best in general (e.g. the inverse of the class distribution).  

3.4.2 Cost-Sensitive Decision Trees 

Decision tree algorithm uses nodes to split the data. Each node is evaluated by the 

criterion chosen (e.g. entropy). The aim of the algorithm is to attain pure nodes, a 

node that has only one class examples are referred as “pure”. The algorithm is simple 

and effective for balanced datasets. On the other hand, when used for imbalanced 

cases, this is not the case. Deriving pure nodes are not that hard for the algorithm 

since the majority class dominates the minority class and if your nodes contain all 

majority class examples the evaluation criterion would give good results although 

the algorithm almost completely ignores the minority class. 

Cost-Sensitive Decision T rees eliminate this issue by manipulating the criterion by 

assigning weights for class labels. This method is offered by T ing, in his paper 

published in 2002.   

In order to mitigate the negative effects of imbalance on the minority class, low 

weight can be assigned to majority class and high weight can be assigned to the 

minority class. 
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The weights can be determined by an expert of the problem domain, parameter 

tuning by grid search, or using inverse of the density of the classes in the dataset as 

weights. 

 

3.4.3 Cost-Sensitive SVM’s 

SVM’s is seen as a modified version of Perceptron algorithm. The perceptron finds 

a hyperplane that separates the classes in the training data. SVM’s added the feature 

of Support Vectors which maximizes the margin between closest instance of each 

class to the hyperplane. SVM’s function is given below. 

 * * 2
max( , ) ( * ) 1iw b such that y w X b

w
+   (3.36) 

or 

 * *min( , ) ( * ) 1
2

i

w
w b such that y w X b+   (3.37) 

Here, w is the vector which is a vector and it is perpendicular to the hyperplane. 

Aforementioned formula belongs to the Hard Margin SVM’s which works for 

linearly separable datasets. Finding linearly separable datasets in real life is not quite 

possible. This is why Soft Margin SVM’s are used in most of the cases. The 

optimization function for Soft Margin SVM is given below. 

 * *

1

min( , )
2

n

i

i

w
w b c 

=

+   (3.38) 

For correctly classified samples   will be 0 and for incorrectly classified samples 

  will be equal to the distance of example to its class’s corresponding support 

vector.  
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SVM’s uses kernel tricks in order to make non-linearly separable data into separable 

one. The feature space transformed by using different kernel tricks so a hyperplane 

can be drawn which cannot be drown in the original feature space. Most commonly 

used kernels are linear, radial and polynomial transforms. In some situations, data is 

not linearly separable even with kernel tricks. For these situations soft margin SVM 

function which is given above is used. 

In above formula soft margin regularization parameter is called c, it controls the 

balance between maximizing the margin between support vectors and minimizing 

examples that are misclassified (Fernández et al., 2018).  

 If c set to 0, that would be a hard margin which would not allow any violations of 

misclassification. When the value assigned for c increases, the margin gets softer and 

allows more misclassifications but increase the margin as a trade-off. 

Even though SVM’s are effective in balanced data, it is susceptible to give 

suboptimal performance for imbalanced data (He & Ma, 2013). 

Parameter c which is described above is used as a penalty term to tune the algorithm 

in accordance with the imbalance rate. The weights of the classes are equal for each 

class so the softness of the margin is equal for classes as default and that favors the 

majority class. (Brownlee, 2020). 

To accommodate this issue, higher weight can be assigned to minority class which 

makes the margin softer and lower weight can be assigned for majority class which 

in turn makes the margin to be harder for majority class. 

This will cause the majority class to be stricter about misclassifications and do not 

allow misclassified minority class examples to the majority class side. On the other 

hand, minority class side will be more flexible about  misclassified examples of 

majority class to be on the minority class side 

By assigning different weights for different data points Weighted SVM algorithm 

learns the decision boundary in accordance with the relative density of the data points 

in dataset. (Yang & Song, 2007) 
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3.4.4 Weighted XGBoost Algorithm 

Extreme Gradient Boosting (XGBoost) is a really powerful T ree boosting method 

which is widely used in Machine Learning problems. The algorithm is developed by 

Chen and Guestrin (2016). It is a union of decision trees algorithm in which new 

trees correct the errors of the previously built trees. This process continue until no 

improvements can be offered by new trees.  

The algorithm provides state-of-art performance on many classification tasks and its 

scalability to all types of classification scenarios is the most important aspect of this 

algorithm (T . Chen & Guestrin, 2016). 

The algorithm has variety of hyperparameters which should be tuned in order to get 

the best results possible. One of these parameters is the parameter where we can set 

the weight of positive class. In the algorithm, gradient term indicates how steep is 

the loss function which the algorithm aims to minimize. If gradient is high, that 

shows high error, If the gradient is low, the error is low. The parameter of assigning 

weight to positive class actually emphasizes the importance of positive class when 

increased. The model gives more importance to the positive class since the increase 

in the parameter will result higher gradient which means higher error to correct. Too 

much increase in the weight parameter can cause overfitting of the model where the 

prediction quality of majority class or both suffers as a result.   

 The parameter is set to 1 as default. The logical approach for the parameter value is 

to use the inverse of the class distribution 

3.5 Algorithm Level Methods 

Algorithm level methods are also called as internal methods. Under this category, 

there are methods referred as threshold moving, probability calibration, ensemble 

algorithms and one-class classification. 
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3.5.1 Threshold Moving 

Most of the classification algorithms calculates the probabilities and uses thresholds 

to turn these probabilities into class labels. Default thresholds used by the predictive 

models are as given below: 

 
0.5 0

0.5 1

Predicted probability class

Predicted probability class

 →

 →
 (3.39) 

In order to use predicted probabilities in the best possible manner, above thresholds 

falls short for the following reasons: 

1. Some algorithms, because of their nature, give uncalibrated probabilities, 

2. Severe class distribution of the dependent variable, 

3. The metric used in the training phase does not match with the metric used in 

the testing phase, 

4. The misclassification costs are not equal between positive and negative class.  

Provost (2000) mentioned that it would be a mistake to use the predicted class labels 

produced by standard machine learning algorithms without adjusting the threshold.  

In order to resolve aforementioned problems, moving threshold to find the optimal 

one is a required step.  

Using other methods, for example sampling, without trying the set optimum 

threshold can be misleading, threshold moving simply uses original dataset and 

moves the threshold to an optimum place where the minority class is recognized and 

predicted better (He & Ma, 2013) 

The algorithm of threshold moving is as follows: Model is fitted using training data. 

After that, the probabilities of belonging a class is predicted using test dataset. 

Following that step the candidate thresholds are used to convert the probabilities 

calculated in the previous step. Class labels are evaluated with an appropriate metric 

and highest scoring threshold is chosen. 
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3.5.2 Probability Calibration 

Many Machine Learning algorithms can predict probability scores of belonging a 

specific class. Unfortunately, most of these probabilities are not well calibrated. 

Some of the models give optimistic probabilities, on the other hand, some of them 

give pessimistic ones. This problem is amplified when the class imbalance is present 

in the dataset. Hence, calibrating probabilities is a good practice especially for 

Imbalanced classification. 

Calibrated probabilities show the real likelihood of the class membership of an 

example. To give an example, assume that one mail account has received 50 mails 

and 4 of them are spam. That means 8% of the mails are spam. This is the case when 

probabilities are calibrated. Calibrated probabilities set a good foundation for 

classification (Brownlee, 2020). 

Some Machine Learning algorithms provides calibrated probabilities, these are the 

ones that use probabilistic framework. Logistic Regression, Artificial Neural 

Networks, LDA, Naïve Bayes, can be counted in this category.  

On the other hand, some algorithms only predict class labels or uncalibrated 

probability scores. SVM’s, k- Nearest Neighbors (KNN), Decision T rees can be 

counted in this category. 

One of the most common ways to scale probabilities are Platt scaling, which uses 

Logistic Regression for Probability calibration. The other one is Isotonic Regression, 

which implements Weighted least squares Regression for probability calibration. 

3.6 Ensemble Algorithms 

3.6.1 Bagging for Imbalanced Classification 

Bagging name comes from Bootstrap Aggregation. The algorithm is a part of 

Ensemble algorithm because it builds and ensembles different decision trees in order 
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to make a better prediction than a simple decision tree. The algorithm uses 

Bootstrapping to attain different samples which is used to build different decision 

trees. As a last step, each model in the ensemble makes predictions on a new sample 

and the average of the predictions is used as the prediction of the bagging classifier 

(Brownlee, 2020). 

The Bootstrapping to create new samples and aggregation of the new models to the 

ensemble continues until the peak prediction performance is achieved which is the 

point that yields no additional improvement by model aggregation. This peak point 

is decided by using a validation set. 

Since the bagging algorithm applies bootstrap to create samples, the class imbalance 

negatively affects the number of examples chosen from the minority class. One of 

the most commonly used method is oversampling the minority class or 

undersampling the majority class examples prior to the bagging algorithm. 

3.6.2 Random Forest Classifier for Imbalanced Classification 

Random Forests can be thought as an improvement of bagging algorithm. The 

algorithm has significant similarities with bagging algorithm. The sampling creation 

via bootstrap exists in the Random Forest Algorithm. The difference lies in random 

selection of different subsets of features for each model. This renders the correlation 

of the created models low. The prediction of the Random forest attained by the 

average of the all tree models that are built throughout the process by the algorithm. 

(Kuhn & Johnson, 2013).  

In imbalanced datasets, it is highly likely that minority class is represented poorly or 

not represented at all in bootstrap samples, which automatically results poor 

prediction performance over minority class examples (C. Chen et al., 2004). 

There are some techniques to solve this issue. One of them is using weighted 

Random Forest. This category has 2 subcategories. One of them is using class 

weights based on training data imbalance ratio, other one is giving different class 



 

 
43 

weights for each bootstrap sample. The logic behind the sample focused weighting 

is each bootstrap sample contains different minority to majority ratio. Other 

technique is using under or over sampling on training data before the usage of the 

algorithm.  

3.6.3 Easy Ensemble for Imbalanced Learning 

The Easy Ensemble algorithm is proposed by Liu et al. in their paper published in 

2008. They also mentioned that even though undersampling is effective for class 

imbalance, some of the potential value is lost by ignored majority class examples. In 

order to prevent this, Easy Ensemble algorithm is offered by the authors. The 

algorithm works as following: 

Assume that minority class examples in training dataset is called P and the majority 

class examples in the training data is called  . The algorithm uses all examples in P 

and randomly samples from T . The subset taken from T is shown as '  and number 

of items in '  is equal to the number of items in P. AdaBoost algorithm is used to 

train models. All models are averaged to get the Easy Ensemble model performance. 

3.7 One Class Classification 

Outliers in a dataset usually causes problems. The mean and variance are directly 

affected by existence of outliers. Also removing outliers before building predictive 

models are also suggested. 

There are several methods to detect outliers in a dataset. One of them is called One 

Class Classification. This classifiers are trained with non-outlier or normal datasets 

and new instances are classified as normal or anomaly(outlier) later on. Compared 

to the binary classification, main differences can be counted as: 

1. Positive (minority) class is named as anomaly(outlier) and encoded as “ -1” 

instead of “0” 
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2. Negative (majority) class is called as normal instances and encoded as “1” 

as per in the binary classification. 

3. Only majority class included in the training part. 

This method is suitable for the problems in which minority class examples are so 

rare that including in the training of a binary classification model would be trivial. 

On the other hand, if minority class lacks a structure, and composed by noisy or very 

little clusters, one class learning also works well.  

A big disadvantage of using one class learning on imbalanced classification 

problems is discarding all useful information in minority class. This makes the 

method not feasible for some problem domains (Fernández et al., 2018). 
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CHAPTER 4   

4 DATASET 

The dataset used for the study obtained from www.barttorvik.com. It is an internet 

site about college basketball statistics. The dataset was obtained as .csv format. The 

dataset consist of college basketball players from 2008 to 2022. The default version 

of the dataset contains 63 features and 70610 observations.  

4.1 Variables 

All variables in NCAA College Basketball League Player Statistics Dataset  is given 

below. 

1. Player Name 

Name of the player 

2. Team 

Team of the player 

3. Conference 

The name of the conference. Conference is a collection of the teams. 

4. Games Played 

Total games played by the player. 

5. Minutes Percentage 

Minutes played by the player divided by the total time played by the team in the 

season. It shows what percentage of the whole season the player was on the court.  

6. Offensive Rating (ORtg) 

How many points a player possibly produce when he attempts. 

http://www.barttorvik.com/
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7. Usage (usg%) 

It shows the estimated percentage of the team plays that a player used. The formula 

is as follows: 

 % 100*    0.44 *      *    / ) 5 / *      0.44  (( ) ( ) ( *        ) ( )usg FGA FTA TOV TmMP MP TmFGA TmFTA TmTOV= + + + +  

 (4.1) 

8. Effective Field Goal Percentage (eFG%) 

 the formula is:  

 ( )  0.5 % * 3  /  FG P FGAeFG +=  (4.2) 

Assume player A scored 10 points by 2 two point field goals and 2 three point field goals, 

on the other hand, Player B scored 10 points by 5 two point field goals. Both of the 

players scored 10 points so the Effective Field Goal Percentage for both players is %50.  

9. True Shooting Percentage (TS%) 

The formula of the metric is: 

 )%  /  * (2TS PTS TSA=  (4.3) 

10. Offensive Rebound Percentage (ORB%) 

The percentage of the potential offensive rebounds the player may grab while he was 

on the court. The formula was given below. 

 ( ( )) ( ( ))% 100 *   *    / 5  /   *        ORB ORB TmMP MP TmORB Opp DRB= +  (4.4) 

11. Defensive Rebound Percentage (DRB%) 

The percentage of the potential defensive rebounds the player may grab while he was 

on the court. The formula was given below. 

 ( ( )) ( ( ))% 100 *   *    / 5  /   *        DRB DRB TmMP MP TmDRB OppORB= + (4.5) 

12. Assist Percentage (AST%) 

It is a prediction of the team scores which the player assisted while he was on the 

court. The formula is as follows: 
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 % 100 *   /  /    /((( ( )) ) ) 5  *      AST AST MP TmMP TmFG FG= −  (4.6) 

13. Turnover Percentage (TOV%) 

Predicted turnover count per 100 possessions. Formula is as follows: 

 100 *   /    0.44( * %     TOV FGA FTA TOVTOV + += ) (4.7) 

14. Free Throws Made (FT) 

Free throws the player made in the season. 

15. Free Throw Attempts (FTA) 

Free throw attempts of the player in the season. 

16. Free Throw Percentage (FT%) 

Free throws made divided by free throw attempts. 

17. Two Points Made (2P) 

Two point field goals made by the player. 

18. Two Point Attempts (2PA) 

Two point field goal attempts of the player 

19. Two Point Percentage (2P%) 

Two points made divided by two point attempts 

20. Three Points Made (3P) 

Three point field goals scored by the player 

21. Three Point Attempts (3PA) 

Three point field goal attempts by the player. 

22. Three Point Percentage (3P%) 

Three point field goals made divided by three point attempts. 

23. Block Percentage (BLK%) 

A prediction of the percentage of the opponent field goals blocked by the player 

while he was on the court. The calculation of this metric is as follows: 
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 % ( ( )) ( ( ))100 *   *    / 5  /   *        3B BLK TmMP MP Opp pLK FGA O p PA−= (4.8) 

24. Steal Percentage (STL%) 

Percentage of the opponent possessions that end with a steal by the player. The 

formula is given below: 

 % 100 *   *     ))/ 5   ( ( / *) (      STL STL TmMP MP Opp Poss=  (4.9) 

25. Free Throw Rate (FTR) 

Free Throw Rate is Free Throw Attempts divided by Field Goal Attempts. 

26. Year in College 

It is a categorical variable which can take values of Freshman, Sophomore, Junior, 

Senior. 

27. Height 

Height of the player. 

28. Points Over Replacement Per Adjusted Game (Porpag) 

Porpag is a metric to predict how many more points a given player can score 

compared to a hypothetical substitute. The formula of the metric is given below:  

 ( ) –  88  *  % * % *65porpag ORtg Poss Min=  (4.10) 

In this equation, 88 is the expected rating and 65 is the constant for possessions. 

29. Adjusted Offensive Efficiency (AdjOE) 

An estimate of the points per 100 possessions a team would score against the defense 

of an average division 1 team 

30. Personal Foul Rate (pfr) 

Personal fouls per 40 minutes 

31. Year 

Year of the season. 

32. Player ID (pid) 
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ID’s that are assigned for each unique player. 

33. Assist / Turnover (ast/tov) 

Assists of the player divided by turnovers of the player. 

34. Rimmade 

The number of shots made around the rim. 

35. Rimmade + Rimmiss 

The number of shots made around the rim plus the number of shots missed around 

the rim. 

36. Midmade 

Number of shots made from midrange 

37. Midmade + Midmiss 

Number of shots made from midrange plus number of shots missed from midrange 

38. Rimmade / (Rimmade + Rimmiss) 

Attained by dividing “Rimmade” by “Rimmade plus Rimmiss”. 

39. Midmade / (Midmade + Midmiss) 

Attained by dividing the number of shots made by the player by total midrange shot 

attempts by the player. 

40. Dunksmade 

Number of dunks made from the player 

41. Dunksmiss + Dunksmade 

Number of dunks which are missed by the player plus the number of dunks that are 

made by the player 

42. Dunksmade / (Dunksmade + Dunkmiss) 

Number of dunks that are made by the player divided by the total dunk attempts of 

the player. 
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43. Pick 

Shows the players draft status. 1 for drafted 0 for not drafted. If this variable equals 

to 1, it means the player is drafted in his career, it does not mean he is drafted at the 

specific season. 

44. Defensive Rating (drtg) 

For 100 possessions, how many points are allowed by the player. 

45. Adjusted Defensive Rating (adrtg) 

For 100 possessions, how many points are allowed to the league average.  

46. Defensive Points Over Replacement Per Adjusted Game (dporpag) 

Defensive approach to the Points Over Replacement Per Adjusted Game metric.  

47. Stops 

Stops are blocks, steals, defensive rebounds plus the likelihood of turnovers and 

misses forced by the individual which did not ended up as a steal or a block. 

48. Box Plus/Minus (bpm) 

Points above the average league player for 100 possessions. 

49. Offensive Box Plus/Minus (obpm) 

Offensive version of the box plus/minus. 

50. Defensive Box plus/minus (dbpm) 

Defensive version of box plus/minus. 

51. Game Box Plus/minus (gbpm) 

New version of Box Plus/minus. 

52. Minutes Played (mp) 

Total minutes played by the player. 

53. Offensive Game Box Plus/Minus (ogbpm) 

New version of the offensive box plus/minus. 

54. Defensive Game Box Plus/Minus (dgbpm) 
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New version of the defensive box plus/minus. 

55. Offensive Rebounds (oreb) 

Total offensive rebounds of the player. 

56. Defensive Rebounds (dreb) 

Total defensive rebounds of the player. 

57. Total Rebounds (treb) 

Summation of offensive rebounds and defensive rebounds. 

58. Assist (ast) 

Total assists the player made. 

59. Steal (stl) 

Total steals the player made. 

60. Block (blk) 

Total blocks the player made. 

61. Points (pts) 

Total points the player made. 

62. Position (Pstn) 

Position of the player (e.g. point guard, center) 

63. Threes Per 100 Possessions (TPA / 100) 

Three point attempts of the player per 100 Possessions. 
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4.2 Data Preprocessing 

Data preprocessing is the most time-consuming part in any Machine Learning 

problem. The data preprocessing steps taken in this study were given below. 

4.2.1 Minutes Played Percentage Threshold 

As stated in the Features section, Minutes Played Percentage (Min_per) feature is a 

measure of percentage of the total match time in which the player was on the court. 

If the value of this feature is low (e.g. 3) that means the player was not played in this 

season much. This can cause some statistics of the player to be unnaturally high or 

low (e.g. Offensive Rating, Usage, etc.). In addition to this, players who are drafted 

have played at least %10 percent of the total season. There are only 2 exceptions to 

this. 

Which can be seen in below table: 

Table 4.1 Drafted Players Whose Minutes Played Percentage is Below 10 

Player Name Minutes Played % Games Played Drafted 

Michael Porter Jr. 4.1 3 Yes 

James Wiseman 5.5 3 Yes 

 

Michael Porter Jr. was injured and got a back surgery. Therefore he missed most of 

the season. Due to his promising high school career, he was drafted regardless of the 

injury. 

James Wiseman on the other hand, deemed ineligible to play in NCAA since his 

family accept 11,500 dollars from the Penny Hardaway (Who became the head coach 

of the Memphis T igers team in future) when James Wiseman was a junior at high 

school. After that NCAA give him 12 games suspension (each game removes 1000 
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dollars that he received when he was at high school). After that NCAA demanded 

11.500 dollars donation to charity in order to play again for Memphis again. He 

reported that he will stop his college career and prepare with an agent to NBA 

DRAFT 2020. This is why he has played only 3 games in NCAA. He Picked by 

Golden State Warriors in 2020 as a 1st round 2nd order pick. 

Other than aforementioned drafted players, there are no other drafted players who 

played less than 10 percent of the season. Additionally, it is a fact that majortiy of 

the drafted players played above a certain threshold, and under a certain threshold of 

minutes played percentage, no players are not drafted.  there are lots of players whose 

minutes played percentage is lower than 1. Due to the fact that this can lead 

algorithms to mistakenly classify players who has low amounts of minutes played 

percentage (e.g. lower than 5 percent) as not drafted and classify players with higher 

amounts of minutes played percentage (e.g. more than 90 percent) as drafted. Even 

though this would not be completely wrong, there are high level players who were 

seen as a future NBA player got a minor injury and missed a proportion of the season 

which end up decreasing his minutes played percentage. In order to prevent 

algorithms to shortcut the learning process, a threshold of 10 percent is added to the 

dataset. In other words, players whose minutes played percentage is below 10 is 

ditched from the data except the players in table 4.1. since the drafted players are 

really rare in the dataset. Loss of observations belong to the minority class cannot be 

accepted.  

4.2.2 Missing Values in Year and Height Variables 

There were 35 players in total whose year or height information have been missing. 

The correct information is collected from the internet and imputed for the 

observations that lack this information under the variables mentioned. 
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4.2.3 Height Transformation 

Height values of the players were shown as 6-3 (6 feet 3 inches) or 7-1 (7 feet 1 

inches) in a string format. When the format changed to the integer format the Python 

thought 6-3 is a subtraction and gives the result of 3 as the players height. In order 

to correct this issue, all height transformed into inches. Since 1 foot is equal to 12 

inches, 6 feet 3 inches were encoded as 75 inches in the dataset.  

4.2.4 Assist / Turnover Missing Data Imputation 

15 observations had had missing data in the Assist / Turnover variable. Assist and 

Turnover totals acquired from the internet and ratio of them were imputed to 

corresponding missing values. 

4.2.5 Dropping the variables that has Missing Variables 

Below variables deleted from the dataset since they contain too much missing data: 

• Rimmade,  

• Rimmade + Rimmiss,  

• Midmade,  

• Midmade + Midmiss,  

• Rimmade / (Rimmade + Rimmiss),  

• Midmade / (Midmade + Midmiss),  

• Dunksmade,  

• Dunksmiss + Dunksmade,  

• Dunksmade / (Dunksmade + Dunkmiss). 
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4.2.6 Label Encoding Applied to Year in College Feature 

Year in college is an ordinal categorical feature which has 4 labels (i.e. Freshman, 

Sophomore, Junior, Senior). Label encoding was applied to these labels since the 

variable is not nominal, but ordinal.   

4.2.7 Standardization and Min-Max Feature Scaling of the Data 

For all the experiments, 3 versions of the dataset were used: First version was the 

dataset with standardized features, in other words, features are transformed into Z 

scores with below formula. 

 
x

Z




−
=  (4.11) 

Second version was normalized versions of the data features. The min-max feature 

scaling normalization formula is given below: 

 min

max min
norm

x x
x

x x

−
=

−
  (4.12) 

For the third version of the input data, Principal Component Analysis is applied and 

the dimension of the training dataset is reduced. The steps taken throughout Principal 

Component Analysis is given below. 

4.2.8 Principal Component Analysis 

The scree plot which shows principal components on the X axis and explained 

variance on Y axis is given in Figure 5.1 below. 
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Figure 4.1 Scree Plot of Principal Components and Explained Variance Ratios 

 

By looking the scree plot, it can be seen that after 6 th principal component, the 

additional variance explanation gets lower and lower, on the other hand, from 6th to 

20th component there is a visible decline which may be a sign of losing valuable 

information if one cuts the Principal Components at 6. The big picture can be seen 

from scree plot but in order to be more precise, numerical values of the variance 

explanation should be checked. 

In order to see more detail about variance explanation of the principal components, 

Table 4.2 was created. Since there are 48 variables in the training set and after 20 th 

component the increase of variance explanation is significantly low, the rows of the 

table only extended to 20 th component. 
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Table 4.2 Principal Components, the Amount of Variance They Explain and Model 
Performances 

PC Exp.Var. Cum.Exp.Var. LogReg F1 LogReg G-Mean 

PC1 0.37358675 0.37358675 0.360 0.495 

PC2 0.17590321 0.54948996 0.373 0.509 

PC3 0.07818494 0.62767491 0.407 0.534 

PC4 0.07203243   0.69970734 0.421 0.547 

PC5 0.03912875   0.73883609 0.426 0.553 

PC6 0.02835085  0.76718693 0.419 0.550 

PC7 0.02661743 0.79380437 0.452 0.585 

PC8 0.02262434 0.8164287 0.476 0.604 

PC9 0.02158208 0.83801078 0.537 0.657 

PC10 0.01825058 0.85626136 0.537 0.659 

PC11 0.01707665 0.87333801 0.560 0.673 

PC12 0.01629209  0.8896301 0.615 0.719 

PC13 0.01521112 0.90484122 0.672 0.762 

PC14 0.01357958 0.91842081 0.679 0.768 

PC15 0.01238499 0.9308058   0.677 0.766 

PC16 0.01177007 0.94257588 0.692 0.778 

PC17 0.00851607 0.95109194 0.686 0.776 

PC18 0.00806393 0.95915588 0.696 0.785 

PC19 0.00655405 0.96570993 0.706 0.791 

PC20 0.005598   0.97130794 0.702 0.789 

     

In this table, PC13 and earlier components explains 90% of the variance in the 

training data. Also, grid search is applied using Logistic Regression to find out 

critical thresholds for components. Stratified K fold Cross Validation is used for 

evaluation of the models created. It seems that there are significant increases in F1 

score and G-mean score around PC13 and after that Threshold the increase is not 

significant. In Figure 4.2. and Figure 4.3 the fluctuation in G-Mean score and F1 
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Score can be seen more clearly. The performance of the Logistic Regression model 

increases until it reaches PC13. From that point on, increases happen but in a very 

slow manner. The number of components decided as 13 after these analyses.  

 

Figure 4.2 Box Plot of the Grid Search Results for the Number of Components 
That Yields the Best G-Mean Score 
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Figure 4.3 Box Plot of the Grid Search Results for the Number of Components That 
Yields the Best F1 Score  
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CHAPTER 5 

 

5  EXPERIMENTS AND RESULTS 

5.1 Baseline Model Performances 

In this chapter, the methods which are elaborated upon on methodology part are 

tested upon the NCAA Player Statistics dataset. 

There are many machine learning algorithms one can use for variety of machine 

learning classification problems. Most common ones are Logistic Regression  

(LR_liblin: liblinear solver Logistic Regression and LR_lbfgs: lbfgs solver Logistic 

regression), SVM’s (SVM_lin: SVM’s linear kernel and SVM_rbf: SVM’s rbf 

kernel), Decision T rees (D.Tree), Naïve Bayes (N.Bayes), K-Nearest Neighbors 

(KNN), Random Forest (R.Forest), Linear Discriminant Analysis (LDA), Quadratic 

Discriminant Analysis (QDA), Bagged Decision T rees (BAG), Extra T rees (ET), 

XGBOOST (XGB) etc. Before applying techniques dedicated upon imbalanced 

learning, the baseline model performances are evaluated to have a foundation to 

build upon. F1 score, G-Mean score and Accuracy Scores are calculated and given 

in Table 5.1. These scores were chosen since F1 score is the metric which is widely 

used in imbalanced learning and it is the harmonic mean of 2 popular metrics (i.e. 

precision and recall) that measures the positive class prediction quality. G-Mean is 

used because it is seen as an alternative metric for imbalanced cases where two 

classes has equal importance. Accuracy is given because it is the most popular metric 

in Machine Learning even though it is not suitable for imbalanced learning.  All 

scores were attained by Repeated Stratified 10-fold Cross Validation with 3 repeats. 

Below results are attained from Original Dataset, no standardization, normalization 

is applied on the data. 
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Table 5.1 Baseline Model Results on Original Dataset 

 Standardized 
Normalized  

(min-max scaling) 
PCA 

Alg. F1 G-M Acc. F1 G-M Acc. F1 G-M Acc. 

LR_liblin 0.723 0.805 0.983 0.700 0.778 0.982 0.672 0.759 0.981 

LR_lbfgs 0.723 0.807 0.983 0.700 0.778 0.982 0.675 0.764 0.981 

SVM_lin 0.717 0.804 0.983 0.705 0.781 0.983 0.670 0.755 0.981 

SVM_rbf 0.696 0.770 0.982 0.700 0.770 0.983 0.669 0.750 0.981 

N.Bayes 0.314 0.895 0.861 0.314 0.895 0.861 0.571 0.738 0.972 

D.Tree 0.594 0.767 0.971 0.586 0.783 0.971 0.486 0.696 0.965 

R.Forest 0.602 0.694 0.979 0.613 0.686 0.979 0.574 0.665 0.978 

KNN 0.580 0.673 0.978 0.619 0.717 0.978 0.557 0.658 0.977 

LDA 0.668 0.855 0.975 0.705 0.855 0.975 0.637 0.780 0.976 

QDA 0.319 0.897 0.864 0.319 0.897 0.864 0.565 0.821 0.964 

BAG 0.646 0.745 0.981 0.653 0.736 0.980 0.561 0.660 0.975 

ET  0.630 0.718 0.980 0.637 0.719 0.979 0.508 0.584 0.976 

XGB 0.720 0.806 0.983 0.720 0.806 0.983 0.648 0.751 0.979 

 

Above table shows 13 machine learning algorithms as rows and 3 evaluation metrics 

as columns. Evaluation metrics are calculated for 3 version of the dataset. First one 

is Standardized data, second one is Normalized data and the last one is 13 Principal 

Components of the dataset (out of 48 features).    

F1 score is the harmonic mean of Precision and Recall score. Both of the metrics are 

related with positive class. Above plot results shows that the highest F1 score belongs 

to the Logistics Regression (both linear solver and lbfgs solver type) algorithm which 

is 0.723. XGBoost F1 score is clolse to that score which is 0.720. The performance 

comparision of all models for standardized features with box plots can be seen in 

Appendix A.  



 

 
63 

The reason Naïve Bayes algorithm offer comparatively low F1 score is that the Naïve 

Bayes uses Prior probabilities which in this case is the distribution of the classes 

(Class0 = 96.611% and Class1 = 3.389%). Since the prior probability is multiplied 

with the probability of datapoint given class label which is called likelihood to find 

posterior probability which can be declared as class label given datapoint. To 

conclude, datapoints in the training dataset with class label 0 starts the training 

process with a huge disadvantage because of the fact that prior probability of 

minority class is very low and this low probability is a multiplier which decrease the 

overall probability of belonging to class 0 dramatically. This explains low F1 score 

of the Naïve Bayes algorithm. 

G-Mean score is the geometric mean of sensitivity and specificity. In other words, it 

is the geometric mean of the positive class accuracy and negative class accuracy. 

This is a metric popular for imbalanced classification since a great prediction 

performance on the negative class does not make up for a poor positive class 

prediction performance as per the accuracy score. Highest score belongs to Quadratic 

Discriminant Analysis (QDA) which is 0.897 slightly surpasses the score of Naïve 

Bayes which is 0.895. 

Normalized features yielded similar results with standardized features for most of 

the algorithms. Regardless, there are differences for some algorithms. For example, 

Logistic Regression performed better in terms of F1 score with standardized 

coefficients than normalized coefficients.  KNN (K=5) on the other hand, performed 

better on the normalized coefficients in terms of F1 and G-Mean scores. However, 

the best performing models for the specific dataset (e.g. Linear regression, SVM) 

performs better on standardized dataset. Hence, the remaining parts of the 

experiments, standardized features opted over normalized features. 

13 principal components were chosen with Principal Component Analysis which is 

detailed on the Data Preprocessing part of the study and tested with same algorithms. 

The time required for algorithms to learn significantly dropped but the prediction 

performances also dropped. This means reduced model of 13 Principle components 
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is not a feasible for robust model building purposes. The Experiments were 

continued with standardized features. 

All results in Table 5.1 were given in Appendix A-I as box plots. 

5.2 Oversampling and Undersampling Methods 

On this part of the study, Oversampling, Undersampling and combinations of both 

is applied. 

5.2.1 Oversampling Methods Performance Comparison 

In this part of the study, oversampling method performances are compared. The 

algorithms used for this part is Logistics Regression, SVM’s and XGBoost Since 

they were the best performing models on previous part. 

The most basic form of oversampling is random oversampling in which the minority 

class examples oversampled randomly. The random oversampling F1 score for 

Logistic Regression is 0.562. 

Table 5.2 Oversampling Techniques' F1 Scores 

 SMOTE BLSMOTE SVMSMOTE ADASYN 

LR 0.596 0.591 0.621 0.561 

SVM_lin 0.575 0.575 0.613 0.546 

 

In above table, performances of most popular oversampling techniques are 

presented. SMOTE, Borderline SMOTE (BLSMOTE), Borderline SMOTE SVM 

(SVMSMOTE), ADASYN techniques are used and each of them represented as 

columns in the table. The rows of the tables contain learning algorithms which 

performed best in previous section (Table 5.1). Intersections of learning algorithm 

and oversampling methods F1 scores were shown. F1 score was chosen for 
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evaluation because the metric is widely used for imbalanced classification cases and 

put positive class (i.e. minority class) more importance compared to other metrics 

like G-Mean or accuracy.  

By looking at above scores, it can be said that all oversampling techniques yielded 

worse performance in terms of F1 score compared to Logistics Regressions default 

F1 score which is 0.723 and SVM’s default score of F1 which is 0.717 (Table 5.1). 

This might be happened due to overfitting because the minority class density is 

3,389% which makes the imbalance severe. Default versions of the oversampling 

techniques creates synthetic samples with different approaches to match the density 

of the minority class with majority class and there are 726 examples in the minority 

class and 20696 examples in the majority class. So that means default oversampling 

techniques creates synthetic samples whose total count is 19.970 which can cause 

overfit and poor performance on test datasets. Thankfully, the algorithms allow to 

change the minority / majority ratio before transforming the dataset. If overfit theory 

is true, lower minority / majority ratio should yield better scores. In Table 5.3 Same 

learning techniques and same algorithms were used but minority over majority class 

ratio parameter was set to 0.1 instead of the default score which is 1.  

Table 5.3 Oversampling Techniques with 0.1 Minority Over Majority Class Ratio 
F1 Scores 

 SMOTE BLSMOTE SVMSMOTE ADASYN 

LR 0.737 0.732 0.733 0.737 

SVM_lin 0.734 0.728 0.731 0.727 

 

Above table shows new F1 scores after the minority over majority class ratio 

parameter is modified from 1 to 0.1. The results are much better compared to the 

default ratio parameter F1 scores. Also, all of the oversampling techniques provided 

better results compared to the default scores of each learning algorithm. For Logistic 

Regression algorithm, SMOTE and ADASYN provided best F1 scores which is 

0.737 for both oversampling techniques. On the other hand, SVM’s with linear 
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kernel algorithm performed best with a dataset oversampled using SMOTE. The F1 

score of SVM’s with SMOTE is 0.734. In general, best prediction performance come 

from Logistics Regression with an F1 score of 0.737.   

Finding the Best Ratio Hyperparameter Value for Oversampling Techniques 

In this part of the study, the best oversampling parameter of class ratio was detected 

for 2 best performing learning algorithms for the NCAA Player Stats dataset which 

are Logistic Regression and SVM’s. 

Oversampling Methods Hyperparameter Tuning for Logistic Regression  

Changing the minority / majority ratio from 1 to 0.1 increased the performance of all 

oversampling techniques in Chapter 5.2.1. In this part of the study, grid search is 

used to detect best hyperparameter for prediction performance of the model. Lowest 

ratio is determined as 0.05 since 0.036 is the original ratio of the minority class and 

oversampled ratio cannot go below that. Upper limit of minority over majority ratio 

determined as 0.20. Same 4 oversampling techniques were used as per in chapter 

5.2.1 and they are placed as column headers in table 5.4. Logistic Regression is used 

for grid search and results obtained can be seen in in below table. 

Table 5.4 Ratio Hyperparameter Comparison for Logistic Regression 

 SMOTE BLSMOTE SVMSMOTE ADASYN 

0.05 0.7356 0.7353 0.7335 0.7363 

0.06 0.7395 0.7385 0.7390 0.7435 

0.07 0.7420 0.7411 0.7403 0.7441 

0.08 0.7434 0.7398 0.7397 0.7429 

0.09 0.7430 0.7362 0.7332 0.7369 

0.10 0.7391 0.7361 0.7352 0.7354 

0.11 0.7362 0.7282 0.7299 0.7278 

0.12 0.7313 0.7256 0.7266 0.7213 

0.13 0.7301 0.7182 0.7266 0.7181 



 

 
67 

0.14 0.7265 0.7162 0.7208 0.7159 

0.15 0.7232 0.7130 0.7192 0.7080 

0.16 0.7157 0.7100 0.7168 0.7051 

0.17 0.7136 0.7041 0.7127 0.6976 

0.18 0.7142 0.7003 0.7135 0.6948 

0.19 0.7095 0.6992 0.7077 0.6913 

0.20 0.7054 0.6965 0.7084 0.6862 

 

Best minority over majority ratio for SMOTE observed to be 0.08, with this 

parameter Logistic Regression achieved the F1 score of 0.7434. Borderline SMOTE, 

Borderline SMOTE SVM and ADASYN algorithms performed best at the ratio of 

0.07. Borderline SMOTE and Logistic Regression achieved the F1 score of 0.7411, 

Borderline SMOTE SVM and Logistic Regression achieved 0.7403 F1 score. 

ADASYN algorithm with the ratio parameter equal to 0.07 makes the Logistic 

Regression achieve the F1 score of 0.7441. All results were attained by applying 10-

fold cross validation with 3 repeats. Highest scores are shown in bold numbers.  

Oversampling Methods Hyperparameter Tuning for SVM’s 

Grid search is applied to find best hyperparameter value for minority over majority 

class ratio. The experiment results were given in Table 5.5 below. 

Table 5.5 Ratio Hyperparameter Comparison for SVM’s 

 SMOTE BLSMOTE SVMSMOTE ADASYN 

0.05 0.7359 0.7373 0.7392 0.7329 

0.06 0.7400 0.7397 0.7415 0.7394 

0.07 0.7363 0.7414 0.7342 0.7406 

0.08 0.7437 0.7380 0.7325 0.7417 

0.09 0.7422 0.7389 0.7314 0.7351 

0.10 0.7379 0.7290 0.7290 0.7311 

Table 5.4 (continued) 
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0.11 0.7331 0.7278 0.7293 0.7212 

0.12 0.7275 0.7195 0.7274 0.7152 

0.13 0.7242 0.7147 0.7220 0.7090 

0.14 0.7223 0.7106 0.7178 0.7076 

0.15 0.7200 0.7069 0.7178 0.6962 

0.16 0.7116 0.6993 0.7165 0.6952 

0.17 0.7065 0.6976 0.7146 0.6863 

0.18 0.7066 0.6970 0.7096 0.6842 

0.19 0.7029 0.6914 0.7090 0.6839 

0.20 0.6972 0.6882 0.7045 0.6778 

 

Linear Kernel SVM’s were used to obtain the results shown in the table. F1 scores 

are attained using 10-fold cross validation with 3 repeats. 

SMOTE oversampling technique provided best results for SVM’s algorithm when 

ratio hyperparameter is equal to 0.08. The F1 score when the SMOTE ratio 

hyperparameter set to 0.08 is 0.7437.  

Borderline SMOTE algorithm performed best when the ratio hyperparameter set to 

0.07. The best F1 score is SVM’s attained with Borderline SMOTE is 0.7414.  

Borderline SMOTE SVM oversampling algorithm provided best performance when 

the ratio parameter set to 0.06. F1 score attained by this hyperparameter is 0.7415.  

ADASYN algorithm worked best when the hyperparameter of minority over 

majority class ratio set to 0.08. The F1 score attained by this hyperparameter is 

0.7417. 

In general, Oversampling algorithms performed best when they are set between the 

range of [0.6, 0.8] for both Logistic Regression and SVM’s. 

Table 5.5 (continued) 
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5.2.2 Undersampling Methods Performance Comparisons 

In this part of the study, most popular and effective undersampling algorithms are 

tested with learning algorithms that performed best on raw dataset which are Logistic 

Regression which is denoted as LR and SVM’s with linear kernel which is denoted 

as SVM_lin. Undersampling algorithms used for experiments are Near Miss 1 

algorithm which is denoted as NM1, Near Miss 2 algorithm which is denoted as 

NM2, Near Miss 3 algorithm which is denoted as NM3, Tomek Links algorithm 

which is denoted as TomekL, CNN, OSS, NCR and ENN. All oversampling 

algorithms are placed as columns in Table 5.6.  

Table 5.6 Undersampling Techniques’ F1-Scores 

 NM1 NM2 NM3 TomekL CNN OSS NCR ENN 

LR 0.449 0.280 0.631 0.722 0.732 0.723 0.729 0.726 

SVM_lin 0.528 0.292 0.678 0.728 0.728 0.727 0.731 0.732 

 

When F1 scores oversampling methods with 2 different algorithm is examined, it 

can be said that only Tomek Links, CNN, OSS and NCR algorithms yielded better 

or similar results compared to the baseline results of Linear Regression and SVM’s. 

This is because well performing algorithms mentioned above has a limited 

undersampling budget due to the nature of the algorithms itself and the ratio 

hyperparameter of minority over majority cannot be manipulated. Poor performing 

algorithms on the other hand, has the property of minority over majority ratio 

manipulation. Since the default rate is 1 (i.e. minority class examples equal to 

majority class examples), 20696 samples are decreased to 726 samples which equals 

to a lot of valuable information loss. The undersampling algorithms which allows to 

tune the minority over majority ratio are Near Miss 1, Near Miss 2, Near Miss 3. The 

ratio parameter was set to 0.1 (the default parameter is 1) and the F1 scores after this 

tuning shared in Table 5.7     
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Table 5.7 Undersampling Techniques with 0.1 Minority Over Majority Class Ratio 
F1 Scores 

 NM1 NM2 NM3 TomekL CNN OSS NCR ENN 

LR 0.712 0.708 0.656 0.724 0.732 0.726 0.729 0.726 

SVM_lin 0.717 0.711 0.698 0.728 0.728 0.727 0.731 0.732 

 

Near Miss 1 and Near Miss 2 undersampling algorithms’ F1-scores are drastically 

improved and Near Miss 3 algorithm’s F1 score is slightly improved after ratio 

parameter tuning.  

Finding the Best Ratio Hyperparameter Value for Undersampling Techniques 

In this part of the study, best minority class over majority class ratio hyperparameter 

searched via applying grid search on undersampling techniques that offers the 

possibility to change the ratio hyperparameter. 

Undersampling Methods Hyperparameter Tuning for Logistic Regression 

In order to find best hyperparameter ratio for Near Miss algorithms, grid search was 

applied. The results were shared in Table 5.8 below. 

Table 5.8 Ratio Hyperparameter Tuning for Logistic Regression 

 NM1 NM2 NM3 

0.05 0.7174 0.7175 0.7168 

0.06 0.7178 0.7172 0.7168 

0.07 0.7190 0.7181 0.7224 

0.08 0.7170 0.7146 0.7301 

0.09 0.7162 0.7103 0.7070 

0.10 0.7121 0.7075 0.6738 

0.11 0.7044 0.6947 0.6410 

0.12 0.7002 0.6817 0.6173 

0.13 0.6948 0.6728 0.6016 
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0.14 0.6960 0.6579 0.5852 

0.15 0.6942 0.6431 0.5692 

0.16 0.6868 0.6296 0.5516 

0.17 0.6768 0.6149 0.5398 

0.18 0.6786 0.6047 0.5305 

0.19 0.6765 0.5890 0.5197 

0.20 0.6693 0.5733 0.5106 

 

 Near Miss algorithms’ minority / majority ratio hyperparameter performances 

checked via grid search between the range of [0.05, 0.20]. Optimum Hyperparameter 

value for Near Miss 1 and Near Miss 2 is detected as 0.07 which yielded the F1 

scores of 0.7190 and 0.7181 respectively. On the other hand, best hyperparameter 

for Near Miss 3 undersampling algorithm found to be 0.08 which provided the F1 

score of 0.7301. 

Undersampling Methods Hyperparameter Tuning for SVM’s 

Ratio hyperparameter tuning is performed with grid search using SVM’s algorithm 

(linear kernel). The experiment results were given in Table 5.9. 

Table 5.9 Ratio Hyperparameter Tuning for SVM’s 

 NM1 NM2 NM3 

0.05 0.7208 0.7195 0.7221 

0.06 0.7201 0.7188 0.7221 

0.07 0.7202 0.7206 0.7247 

0.08 0.7185 0.7212 0.7198 

0.09 0.7184 0.7179 0.6895 

Table 5.8 (continued) 



 

 
72 

0.10 0.7130 0.7141 0.6591 

0.11 0.7050 0.7014 0.6241 

0.12 0.7056 0.6813 0.6004 

0.13 0.7027 0.6707 0.5890 

0.14 0.7092 0.6562 0.5760 

0.15 0.7070 0.6450 0.5646 

0.16 0.7016 0.6251 0.5514 

0.17 0.6969 0.5980 0.5419 

0.18 0.6999 0.5761 0.5343 

0.19 0.6991 0.5596 0.5224 

0.20 0.7037 0.5465 0.5154 

 

Near Miss 1 algorithm performed best when ratio hyperparameter was set to 0.05 

which provided 0.7208 F1 score. Near Miss 2 algorithm performed best when the 

ratio hyperparameter was set to 0.08 which gave the F1 value of 0.7212. Lastly, Near 

Miss 3 Algorithm performed best when the hyperparameter of minority over 

majority ratio was set to 0.07.  

5.2.3 Performance of Combinations of Oversampling and Undersampling 

Techniques 

In this part of the study, combinations of oversampling and undersampling technique 

performances were tested. 

Hyperparameter optimization for SMOTE + Tomek, SMOTE + ENN, SMOTE + 

OSS, SMOTE + NCR Algorithms 

SMOTE + Tomek Links (SMOTETomek), SMOTE + ENN (SMOTEENN), 

SMOTE + OSS (SMOTEOSS) and SMOTE + NCR (SMOTENCR) algorithms will 

Table 5.9 (continued) 
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be evaluated in this section. Since Random Oversampling and Near Miss algorithms 

has their own ratio parameters, these were separated from other algorithms. 

Table 5.10 Grid Search for Hyperparameter Optimization of Combined Sampling 
Techniques (SMOTE +) with Logistic Regression 

 SMOTETomek SMOTEENN SMOTEOSS SMOTENCR 

0.05 0.7334 (0.027) 0.7202 (0.029) 0.7328 (0.023) 0.7256 (0.031) 

0.06 0.7380 (0.029) 0.7232 (0.022) 0.7420 (0.027) 0.7202 (0.031) 

0.07 0.7409 (0.029) 0.7190 (0.028) 0.7382 (0.026) 0.7132 (0.033) 

0.08 0.7393 (0.025) 0.7143 (0.028) 0.7411 (0.033) 0.7098 (0.031) 

0.09 0.7407 (0.029) 0.6989 (0.030) 0.7379 (0.026) 0.7067 (0.033) 

0.10 0.7375 (0.031) 0.6914 (0.030) 0.7381 (0.030) 0.7016 (0.030) 

0.11 0.7366 (0.028) 0.6823 (0.029) 0.7366 (0.030) 0.6935 (0.031) 

0.12 0.7327 (0.032) 0.6780 (0.031) 0.7333 (0.031) 0.6925 (0.029) 

0.13 0.7292 (0.030) 0.6737 (0.030) 0.7325 (0.030) 0.6862 (0.030) 

0.14 0.7268 (0.032) 0.6683 (0.029) 0.7235 (0.031) 0.6840 (0.031) 

0.15 0.7219 (0.031) 0.6619 (0.031) 0.7220 (0.034) 0.6835 (0.031) 

0.16 0.7214 (0.033) 0.6550 (0.032) 0.7169 (0.033) 0.6778 (0.031) 

0.17 0.7173 (0.033) 0.6488 (0.031) 0.7156 (0.032) 0.6729 (0.030) 

0.18 0.7112 (0.033) 0.6470 (0.030) 0.7125 (0.033) 0.6708 (0.033) 

0.19 0.7118 (0.035) 0.6406 (0.031) 0.7074 (0.032) 0.6654 (0.032) 

0.20 0.7084 (0.032) 0.6362 (0.034) 0.7052 (0.030) 0.6626 (0.031) 

 

SMOTETomek algorithm performed best with an F1 score of 0.7409 when the 

minority over majority ratio hyperparameter was set to 0.07. SMOTE, BLSMOTE 

and ADASYN algorithms surpassed this score slightly with ratio parameters of 0.08, 

0.07 and 0.07 respectively. 

SMOTEENN algorithm provided the highest F1 score (0.7232) with Logistic 

Regression when ratio hyperparameter was set to 0.06. 
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SMOTEOSS algorithm gave the best results when the ratio parameter was set to 

0.06. The corresponding F1 value is 0.7420. 

SMOTENCR performed best when the hyperparameter of minority class ratio set to 

0.05. The F1 value Logistic Regression achieved after hyperparameter tuning is 

0.7256. 

Hyperparameter Optimization for SMOTE + Near Miss-1 Algorithm 

Near Miss methods allow setting minority over majority class ratio. All Near Miss 

methods are combined with SMOTE algorithm and two-dimensional grid search 

tables were used for each SMOTE + Near Miss method.  

SMOTE + Near Miss-1 (SMOTENM1) algorithm used as a preprocessing step of 

Logistic regression and grid search is applied to find best class ratio hyperparameter 

for both SMOTE and Near Miss-1. The results which were obtained given in Table 

5.11 below. 

Table 5.11 SMOTENM1 Grid Search for Optimum Class Ratio Results Using 
Logistic Regression 

  Near Miss-1 Hyperparameter 

  0.05 0.06 0.07 0.08 0.09 0.10 0.11 

S
M

O
T

E
 H

y
p

e
rp

a
ra

m
et

e
r 0.04 0.7231 07215 0.7231 0.7221 0.7216 0.7193 0.7161 

0.05  0.7344 0.7373 0.7325 0.7372 0.7332 0.7306 

0.06   0.7367 0.7410 0.7443 0.7408 0.7407 

0.07    0.7426 0.7425 0.7421 0.7417 

0.08     0.7421 0.7411 0.7433 

0.09      0.7424 0.7389 

0.1       0.7381 

 

The best result was attained by setting SMOTE minority / majority ratio to 0.06 and 

setting Near Miss-1 ratio hyperparameter to 0.09. Combined algorithm increases the 

minority class / majority class ratio to 0.06 via SMOTE and increase minority / 
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majority ratio further to 0.09 by undersampling majority class using Near Miss-1 

method.  

Hyperparameter Optimization for SMOTE + Near Miss 2 Algorithm 

SMOTE which is an oversampling method and Near Miss-2 which is an 

undersampling method combined for this part of the study. The algorithm named as 

SMOTENM2. 

Near Miss-2 algorithm has minority over majority ratio hyperparameter as Near 

Miss-1 algorithm. Cross grid search was applied between SMOTE ratio parameter 

and Near Miss-2 algorithm and the results were given in Table 5.12 below. 

Table 5.12 SMOTENM2 Grid Search for Optimum Class Ratio Results Using 
Logistic Regression 

  Near Miss-2 Hyperparameter 

  0.05 0.06 0.07 0.08 0.09 0.10 0.11 

S
M

O
T

E
 H

y
p

e
rp

a
ra

m
et

e
r 0.04 0.7233 0.7245 0.7235 0.7242 0.7185 0.7134 0.7126 

0.05  0.7346 0.7326 0.7324 0.7335 0.7302 0.7279 

0.06   0.7412 0.7401 0.7385 0.7387 0.7401 

0.07    0.7438 0.7437 0.7443 0.7414 

0.08     0.7433 0.7453 0.7454 

0.09      0.7416 0.7386 

0.1       0.7383 

 

The best F1 score Logistic Regression attained with SMOTENM2 combined 

sampling algorithm is 0.7454 which is achieved by setting the ratio parameter for 

SMOTE to 0.08 and setting the ratio hyperparameter of Near Miss-2 algorithm to 

0.11.  
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Hyperparameter Optimization for SMOTE + Near Miss 3 Algorithm 

SMOTE which is an oversampling method and Near Miss-3 which is an 

undersampling method combined for this part of the study. The algorithm named as 

SMOTENM3. Both SMOTE and Near Miss-3 algorithms have minority class over 

majority class ratio hyperparameter which can be tuned for optimum performance. 

Grid search was applied on these 2 hyperparameters in order to find the best 

combination of hyperparameters. Logistic Regression learning algorithm used since 

it gave the best prediction performance alongside with SVM’s throughout the study. 

Between Logistic Regression and SVM’s, there are no big difference in F1 scores 

and the decision made that using only one of them is sufficient. Obtained F1 scores 

for different hyperparameters given in Table 5.13 below. 

Table 5.13 SMOTENM3 Grid Search for Optimum Class Ratio Results Using 
Logistic Regression 

  Near Miss-3 Hyperparameter 

  0.05 0.06 0.07 0.08 0.09 0.10 0.11 

S
M

O
T

E
 H

y
p

e
rp

a
ra

m
et

e
r 0.04 0.7251 0.7242 0.7217 0.7278 0.7305 0.7051 0.6792 

0.05  0.7324 0.7338 0.7330 0.7305 0.7398 0.7265 

0.06   0.7384 0.7400 0.7402 0.7407 0.7148 

0.07    0.7384 0.6754 0.6060 0.5602 

0.08     0.7048 0.6303 0.5703 

0.09      0.7067 0.6403 

0.1       0.7071 

 

Best performance for each SMOTE hyperparameter was written with bold numbers. 

In general, it can be said that version SMOTENM3 provided lover performance 

compared to SMOTENM1 and SMOTENM2. Highest F1 score Logistic Regression 

achieved with SMOTENM3 is 0.7407 which is achieved by setting SMOTE ratio 

hyperparameter to 0.06 and setting Near Miss-3 algorithm hyperparameter to 0.10. 
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5.3 Incorporating Cost-Sensitive Methods 

Cost-sensitive methods change the weight given to the class labels so learning 

process is manipulated to give more importance to the classes. Finding best weights 

by intuition can be challenging. In order to find best weight hyperparameters, grid 

search was applied to the best performed algorithms on previous parts. 

5.3.1 Combining Cost-Sensitive Methods with Oversampling Algorithms 

All oversampling algorithms that were used in previous chapters were combined 

with cost-sensitive methods. Oversampling methods’ hyperparameters and learning 

algorithm’s class weight hyperparameter tuned via grid search cross validation. 

Table 5.13 contains the best 3 F1 score results for each Oversampling Technique. 

Oversampling technique and cost-sensitive Logistic Regression combined via 

Pipeline function in Python library called imbalanced-learn.  

Table 5.14 Best 3 Hyperparameter Combinations for Each Oversampling 
Technique 

 Rank F1 Score Class Weights Minor / Major 

SMOTE 

1 0.7474 Class0: 3, Class1: 2   0.11 

2 0.7464 Class0: 4, Class1: 1  0.28 

3 0.7441 Class0: 7, Class1: 3 0.15 

BLSMOTE 

1 0,7426 Class0: 2, Class1:1 0.1 

2 0.7417 Class0:2, Class1:1 0.11 

3 0.7412 Class0:3, Class1:2 0.09 

SVMSMOTE 

1 0.7437 Class0:2, Class1:3 0.05 

2 0.7414 Class0:4, Class1:1 0.22 

3 0.7411 Class0:2, Class1:1 0.18 

ADASYN 
1 0.7416 Class0:7, Class1:3 0.16 

2 0.7409 Class0:2, Class1:1 0.15 
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3 0.7406 Class0:2, Class1:1 0.12 

 

Above table consists of the results which belongs to 4 oversampling techniques and 

they were placed as rows in the table. For each oversampling technique, 3 highest 

F1 score were written. The Rank column shows the order of the best 3 predictions. 

F1 score column shows the mean F1 score which is derived from 10-fold cross 

validation. Class Weight column shows the Cost-Sensitive Logistic Regression’s 

weight hyperparameter. Minor / Major shows the ratio hyperparameter of SMOTE 

algorithm. 

The F1 score of SMOTE and Logistic Regression achieved at class weight  

hyperparameter {0:3, 1:2} and ratio hyperparameter 0.11 is 0.7474 which were the 

highest F1 score until this point of the experiments.  

SVMSMOTE algorithm’s best F1 score (0.7437) is attained when the class weight  

hyperparameter was set to {0:2, 1:3} and minority / majority hyperparameter was set 

to 0.05. 2nd best F1 score which is 0.7414 was attained by setting the class weight 

hyperparameter to {0:4, 1:1} and by setting the ratio hyperparameter to 0.22. 3 rd best 

F1 score is which is 0.7411 was attained by setting the class weight hyperparameter 

to {0:2, 1:1} and by setting the ratio hyperparameter to 0.18.   

BLSSMOTE algorithm’s best F1 score which is 0.7426 attained when the class 

weight hyperparameter was set to {0:2, 1:1} and minority / majority hyperparameter 

was set to 0.1. 2nd best F1 score which is 0.7417 was attained by setting the class 

weight hyperparameter to {0:2, 1:1} and by setting the ratio hyperparameter to 0.11. 

3rd best F1 score is 0.7412 was attained by setting the class weight hyperparameter 

to {0:3, 1:2} and by setting the ratio hyperparameter to 0.09.  

ADASYN algorithm’s best F1 score which is 0.7416 attained when the class weight 

hyperparameter was set to {0:7, 1:3} and minority / majority hyperparameter was set 

to 0.16. 2nd best F1 score which is 0.7409 was attained by setting the class weight 

Table 5.14 (continued) 
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hyperparameter to {0:2, 1:1} and by setting the ratio hyperparameter to 0.15. 3 rd best 

F1 score is 0.7406 was attained by setting the class weight hyperparameter to {0:2, 

1:1} and by setting the ratio hyperparameter to 0.12. 

5.3.2 Combining Cost-Sensitive Methods with Combined Sampling 

Algorithms 

Combined sampling algorithms combine oversampling and undersampling methods. 

SMOTETomek, SMOTEENN, SMOTENCR, SMOTENM1 and SMOTENM2 

combined sampling algorithms were used in compliance with cost -sensitive Logistic 

Regression. Grid search Cross Validation technique used to evaluate best 

hyperparameter for both sampling technique and weight hyperparameter. 

3 best F1 scores were given in Table 5.15 for each combined sampling technique 

below. 

Table 5.15 Top 3 Hyperparameter Combinations for combined sampling 
techniques and Cost-Sensitive Logistic Regression 

  Rank F1 Score Class Weights Minor / Major 

SMOTETomek 

1 0.7460 Class0: 2, Class1: 1   0.13 

2 0.7455 Class0: 2, Class1: 1  0.15 

3 0.7430 Class0: 2, Class1: 3 0.07 

SMOTEENN 

1 0.7390 Class0: 10, Class1: 1 0.13 

2 0.7368 Class0: 10, Class1: 1 0.16 

3 0.7358 Class0: 10, Class1: 1 0.15 

SMOTEOSS 

1 0.7448 Class0: 7, Class1: 3 0.19 

2 0.7439 Class0: 3, Class1: 2 0.1 

3 0.7439 Class0: 2, Class1: 1 0.16 

SMOTENCR 

1 0.7419 Class0: 7, Class1: 3 0.06 

2 0.7419 Class0: 10, Class1: 1 0.18 

3 0.7416 Class0: 10, Class1: 1 0.19 
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SMOTENM1 

1 0.7466 Class0: 1, Class1: 1 
SMOTE: 0.07 

NM1: 0.08 

2 0.7452 Class0: 1, Class1: 1 
SMOTE: 0.07 

NM1: 0.1 

3 0.7452 Class0: 1, Class1: 1 
SMOTE: 0.07 

NM1: 0.11 

SMOTENM2 

1 0.7473 Class0: 1, Class1: 1 
SMOTE: 0.07 

NM2: 0.09 

2 0.7462 Class0: 1, Class1: 1 
SMOTE: 0.07 

NM2: 0.11 

3 0.7458 Class0: 1, Class1: 1 
SMOTE: 0.06 

NM2: 0.11 

 

SMOTETomek algorithm’s best F1 score found as 0.7460 which is the second 

highest F1 score until this stage of the study. This F1 score was attained when the 

class weight hyperparameter was set to {0:2, 1:1} and minority / majority 

hyperparameter was set to 0.13. 2nd best F1 score which is 0.7455 was attained by 

setting the class weight hyperparameter to {0:2, 1:1} and by setting the ratio 

hyperparameter to 0.15. 3rd best F1 score is 0.7430 was attained by setting the class 

weight hyperparameter to {0:2, 1:3} and by setting the ratio hyperparameter to 0.07. 

SMOTEENN algorithm’s best F1 score is 0.7390 which was attained when the class 

weight hyperparameter was set to {0:10, 1:1} and minority / majority 

hyperparameter was set to 0.13. 2nd best F1 score which is 0.7368 was attained by 

setting the class weight hyperparameter to {0:10, 1:1} and by setting the ratio 

hyperparameter to 0.16. 3rd best F1 score is 0.7358 which was attained by setting the 

class weight hyperparameter to {0:10, 1:1} and by setting the ratio hyperparameter 

to 0.15. 

Table 5.15 (continued) 
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SMOTEOSS algorithm’s best F1 score is 0.7448 which was attained when the class 

weight hyperparameter was set to {0:7, 1:3} and minority / majority hyperparameter 

was set to 0.19. 2nd best F1 score which is 0.7439 was attained by setting the class 

weight hyperparameter to {0:3, 1:2} and by setting the ratio hyperparameter to 0.1. 

3rd best F1 score found as 0.7439 which was attained by setting the class weight  

hyperparameter to {0:2, 1:1} and by setting the ratio hyperparameter to 0.16.  

SMOTENCR algorithm’s best F1 score is 0.7419 which was attained when the class 

weight hyperparameter was set to {0:7, 1:3} and minority / majority hyperparameter 

was set to 0.06. 2nd best F1 score which is 0.7419 was attained by setting the class 

weight hyperparameter to {0:10, 1:1} and by setting the ratio hyperparameter to 0.18. 

3rd best F1 score found as 0.7416 which was attained by setting the class weight  

hyperparameter to {0:10, 1:1} and by setting the ratio hyperparameter to 0.19. 

SMOTENM1 algorithm allows to change both SMOTE and Near Miss-1 (NM1) 

algorithms’ ratio parameter so the grid search applied for 3 different hyperparameters 

this time. First hyperparameter is SMOTE ratio hyperparameter, second one is Near 

Miss-1 ratio hyperparameter and the last one is the class weight hyperparameter of 

cost-sensitive Logistic Regression. Best F1 score attained after the grid search is 

0,7466 which was attained when class weight hyperparameter was set to {0:1, 1:1} 

and SMOTE ratio hyperparameter was set to 0.07 and NM1 ratio hyperparameter 

was set to 0.08. 2nd best F1 score (0.7452) was reached when the weight class 

hyperparameter was set to {0:1, 1:1}, SMOTE ratio hyperparameter was set to 0.07 

and NM1 ratio parameter was set to 0.1. 3 rd best F1 score (0.7452) was achieved by 

setting the weight class hyperparameter to {0:1, 1:1}, SMOTE ratio hyperparameter 

to 0.07 and NM1 ratio hyperparameter to 0.11. 

SMOTENM2 algorithm used in coherence with cost-sensitive Logistic Regression. 

As per SMOTENM1, 3 hyperparameter grid search was applied. Best F1 score 

attained after the grid search is 0,7473 which was attained when class weight 

hyperparameter was set to {0:1, 1:1} and SMOTE ratio hyperparameter was set to 

0.07 and NM1 ratio hyperparameter was set to 0.09. 2nd best F1 score (0.7462) was 
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reached when the weight class hyperparameter was set to {0:1, 1:1}, SMOTE ratio 

hyperparameter was set to 0.07 and NM1 ratio parameter was set to 0.11. 3 rd best F1 

score (0.7458) was achieved by setting the weight class hyperparameter to {0:1, 1:1}, 

SMOTE ratio hyperparameter to 0.06 and NM1 ratio hyperparameter to 0.07. 

5.4 Probability Threshold Moving for Final Results 

Probability threshold moving was applied for 5 best performing combination of 

methods in order to decide the final predictive model. Stratified train test split was 

used  

5.4.1 Model 1 - SMOTENM2 + Cost Sensitive Logistic Regression I 

SMOTENM2 algorithm hyperparameters consist of SMOTE ratio hyperparameter 

which was set to 0.07 and NM2 ratio hyperparameter which was set to 0.09. Cost -

sensitive Logistic Regression class weight hyperparameter was set to {0:1, 1:1} This 

combination without threshold moving provided the F1 score of 0.7473. After the 

optimum probability threshold grid search, optimum threshold is found as 0.531995 

which provided the F1 score of 0.752. Since F1 score is the harmonic mean of 

Precision and Recall metrics, Precision and Recall Curve were given to show the 

balance between two metrics and the threshold point where the highest F1 score 

achieved also shown in the graph with a black dot. Precision – Recall Curve is given 

below. 
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Figure 5.1 Precision - Recall Curve for Model 1 

 

Above results attained from a model which is trained by 0.80 of dataset and tested 

by 0.20 of the dataset. In order to be more precise, below results were attained by 

10-fold cross validation with 10 repeats which accumulates to 100 models. The 

probability threshold was found as 0.52 which is shown with dotted line in Figure 

5.2. Also, F1, recall and precision scores is shown with red, green and blue lines 

respectively.  
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Figure 5.2 Probability Threshold Plot of Model 1 (10-fold Cross Validation) 

 

The threshold found with 10-fold Cross Validation is close to the threshold found 

with train-test split. The inverse relationship between precision and recall metrics 

can be clearly seen in Figure 5.2.    

5.4.2 Model 2 - SMOTENM2 + Cost-Sensitive Logistic Regression II 

Same Combination with model one but different hyperparameters used. SMOTE 

ratio hyperparameter was set to 0.07 and NM2 algorithm hyperparameter was set to 

0.11 lastly, class weight hyperparameter was set to {0:1, 1:1}. With these 

hyperparameters and threshold moving, the combined algorithm gave the F1 score 

of 0.7500 which is higher than the performance of the same algorithm without  

threshold moving. Best probability threshold was found as 0.508798. The Precision 

- Recall Curve of the algorithm was given below. 
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Figure 5.3 Precision – Recall Curve for Model 2 

 

Above results attained from a model which is trained by 0.80 of dataset and tested 

by 0.20 of the dataset. In order to be more precise, below results were attained by 

10-fold cross validation with 10 repeats which accumulates to 100 models. The 

probability threshold was found as 0.51 which is shown with dotted line in Figure 

5.4. Also, F1, recall and precision scores is shown with red, green and blue lines 

respectively. 
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Figure 5.4 Probability Threshod Plot of Model 1 (10-fold Cross Validation) 

 

The threshold found with 10-fold Cross Validation is close to the threshold found 

with train-test split. The fact that precision and recall metrics works as a trad- off can 

be clearly seen in Figure 5.4.    

 

5.4.3 Model 3 – SMOTENM1 + Cost-Sensitive Logistic Regression 

For this combined algorithm, SMOTE ratio hyperparameter was set to 0.07 and NM2 

algorithm hyperparameter was set to 0.08 lastly, class weight hyperparameter was 

set to {0:1, 1:1}. With these hyperparameters and threshold moving, the combined 

algorithm gave the F1 score of 0.7575 which is higher than the performance of the 

same algorithm without threshold moving. Best probability threshold was found as 

0.491407. The Precision - Recall Curve of the algorithm was given below. 
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Figure 5.5 Precision – Recall Curve for Model 3 

 

Above results attained from a model which is trained by 0.80 of dataset and tested 

by 0.20 of the dataset. In order to be more precise, below results were attained by 

10-fold cross validation with 10 repeats which accumulates to 100 models. The 

probability threshold was found as 0.51 which is shown with dotted line in Figure 

5.6. Also, F1, recall and precision scores is shown with red, green and blue lines 

respectively. 
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Figure 5.6 Probability Threshod Plot of Model 1 (10-fold Cross Validation) 

 

Also for model 3, the optimum threshold value is around 0.50. 

5.4.4 Model 4 - SMOTETomek + Cost-Sensitive Logistic Regression 

For this combined algorithm, SMOTETomek ratio hyperparameter was set to 0.13 

and class weight hyperparameter was set to {0:2, 1:1}. With these hyperparameters 

and threshold moving, the combined algorithm gave the F1 score of 0.7551 which is 

higher than the performance of the same algorithm without threshold moving. Best  

probability threshold was found as 0.478086. The Precision - Recall Curve of the 

algorithm was given below. 
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Figure 5.7 Precision – Recall Curve for Model 4 

 

Above results attained from a model which is trained by 0.80 of dataset and tested 

by 0.20 of the dataset. In order to be more precise, below results were attained by 

10-fold cross validation with 10 repeats which accumulates to 100 models. The 

probability threshold was found as 0.47 which is shown with dotted line in Figure 

5.8. Also, F1, recall and precision scores is shown with red, green and blue lines 

respectively. 
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Figure 5.8 Probability Threshod Plot of Model 4 (10-fold Cross Validation) 

 

The threshold attained by train-test split is really close with the threshold attained 

by 10-fold cross validation with 10 repeats. The bands around the lines show 

interquartile range of the scores. 

 

 

 

5.4.5 Model 5 – SMOTE + Cost-Sensitive Logistic Regression 

For this combined algorithm, SMOTETomek ratio hyperparameter was set to 0.11 

and class weight hyperparameter was set to {0:3, 1:2}. With these hyperparameters 

and threshold moving, the combined algorithm gave the F1 score of 0.7568 which is 
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higher than the performance of the same algorithm without threshold moving. Best  

probability threshold was found as 0.521922. The Precision - Recall Curve of the 

algorithm was given below. 

 

Figure 5.9 Precision – Recall Curve for Model 5 

Above results attained from a model which is trained by 0.80 of dataset and tested 

by 0.20 of the dataset. In order to be more precise, below results were attained by 

10-fold cross validation with 10 repeats which accumulates to 100 models. The 

probability threshold was found as 0.50 which is shown with dotted line in Figure 

5.10. Also, F1, recall and precision scores is shown with red, green and blue lines 

respectively. 
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Figure 5.10 Probability Threshod Plot of Model 1 (10-fold Cross Validation) 

 

The threshold found is close to the threshold found by train-test split. For 5 best 

performing models, the probability thresholds found to be close to 0.50 with slight 

differences. 

5.5 Monte Carlo Simulation 

Monte Carlo (MC) simulation was applied in order to test the previously applied 

methods on different simulated datasets. For this part of the study, following 3 

different scenarios were used. 

• 1:99 minority over majority ratio with 20 independent variables 

• 40:60 minority over majority ratio 20 independent variables 

• 20:80 minority over majority ratio 20 independent variables 

• 1:99 minority over majority ratio 4 independent variables 
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First 1:99 scenario is used to represent an extreme imbalance scenario and this 

scenario is the closest one to the real-world data used in the study which has 

3.39:96.61 imbalance ratio. Second scenario which has 40:60 imbalance ratio 

represents a mild imbalance scenario. Third scenario created to have an imbalance 

ratio that is between scenario 1 and 2. Last scenario which has the same imbalance 

scenario with the first one (i.e. 1:99) but only 4 independent variables instead of 20.   

Aforementioned scenarios applied on the five best predictive models mentioned on 

previous part of the study. Since 2 out of 5 models are same combination with 

different hyperparameters (SMOTENM2+ Cost-Sensitive Logistic Regression) the 

number of unique models that performed best is actually 4. These are: 

• SMOTENM2 + Cost-Sensitive Logistic Regression 

• SMOTENM1 + Cost-Sensitive Logistic Regression 

• SMOTE + Cost-Sensitive Logistic Regression 

• SMOTETomek + Cost-Sensitive Logistic Regression  

The best minority:majority ratio hyperparameters and best class weight 

hyperparameters for aforementioned predictive models found by grid search and then 

compared with best hyperparameters found for other scenarios and the real world 

data case. Also, each scenario’s best scores were compared with the baseline score 

attained by Logistic Regression only to determine the effectiveness of the 

imbalanced learning techniques over the scenario created. 

Monte Carlo Simulation applied with repeated stratified k fold cross validation 

which can be found in the library called scikit-learn. 10 fold and 50 repeats which 

counts for 500 different train test splits for each grid search. 

5.5.1 Scenario 1 – 1:99 Imbalance Ratio with 20 Independent Variables 

The baseline score obtained with Logistic Regression for this scenario is 0.8770. 

Table 5.16 shows the best F1-scores acquired for scenario 1.  
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Table 5.16 Best Scores Obtained by Imbalanced Learning Techniques, Scenario 1 

 Rank F1 Score Class Weights Minor / Major 

SMOTE 

1 0.8929 Class0: 4, Class1: 1  0.08 

2 0.8924 Class0: 2, Class1: 1  0.05 

3 0.8924 Class0: 1, Class1: 1 0.03 

SMOTETomek 

1 0.8985 Class0: 3, Class1: 2   0.04 

2 0.8978 Class0: 3, Class1: 2  0.03 

3 0.8975 Class0: 4, Class1: 1 0.08 

SMOTENM1 

1 0.9162 Class0: 7, Class1: 3 
SMOTE: 0.02 

NM1: 0.08 

2 0.9139 Class0: 4, Class1: 1 
SMOTE: 0.06 

NM1: 0.13 

3 0.9138 Class0: 4, Class1: 1 
SMOTE: 0.05 

NM1: 0.10 

SMOTENM2 

1 0.9014 Class0: 1, Class1: 1 
SMOTE: 0.02 

NM2: 0.03 

2 0.9013 Class0: 1, Class1: 1 
SMOTE: 0.03 

NM2: 0.04 

3 0.9013 Class0: 4, Class1: 1 
SMOTE: 0.07 

NM2: 0.08 

 

All predictive models with the hyperparameters which are shown in tables 

outperformed the baseline score which is 0.8770. Best performance achieved by 

SMOTENM1 + Cost-Sensitive Logistic Regression model which is 0.9162. this 

score is approximately 4% better compared to the baseline score. With NCAA 

dataset, approximately 2.5% increase in F1-score was achieved. This shows that with 

extreme imbalance scenarios as per scenario 1 dataset and NCAA dataset, achieving 

big jumps in F1 score is not possible without introducing more examples for minority 

class. This is also caused by the nature of the F1-score since it is the harmonic mean 
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of Precision and Recall metrics which are working in an inversely correlated way as 

mentioned in this study. 

The increase in performance when imbalanced learning techniques introduced for 

extremely imbalanced datasets is solidified by using Monte Carlo Simulation as an 

addition to the real-world data experiment. 

The default minority : majority hyperparameter is 1 which makes the density of the 

minority class equal to the density of the majority class. By the results of the 

experiments done over the NCAA dataset, it was claimed that default 

hyperparameters do not work well for extreme imbalance scenarios. The Monte 

Carlo simulation for scenario one also supported that claim and optimum 

hyperparameters for minority : majority ratio hyperparameter found to be slightly 

above to the original minority : majority ratio of the dataset.  

Similar class weight hyperparameters were found compared to the NCAA dataset 

experiments. The general advice is to give more class weight to the minority class in 

Machine Learning Literature but both real-world data experiments and Monte Carlo 

simulation showed that optimum weight hyperparameters give more weight to the 

majority class. 

5.5.2 Scenario 2 – 40:60 Imbalance Ratio with 20 Independent Variables 

This scenario is created to simulate a mild imbalance scenario. The baseline F1-score 

obtained by Logistic Regression is 0.9444 which is higher than the baseline score of  

scenario 1. This can be explained by the difference in the imbalance ratios since in  

scenario 1 only 200 out of 20000 examples belongs to the minority class. On the 

other hand, there are 8000 out of 20000 examples for minority class in scenario 2. 

This is a sign that in scenario 2, the minority class is represented better. Which is the 

main reason of higher baseline F1-score. The highest scores obtained in scenario 2 

is given below. 
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Table 5.17 Best Scores Obtained by Imbalanced Learning Techniques, Scenario 2 

 Rank F1 Score Class Weights Minor / Major 

SMOTE 

1 0.9460 Class0: 3, Class1: 2  0.71 

2 0.9457 Class0: 2, Class1: 1  0.86 

3 0.9456 Class0: 3, Class1: 2 0.8 

SMOTETomek 

1 0.9465 Class0: 2, Class1: 1   0.93 

2 0.9460 Class0: 2, Class1: 1  0.88 

3 0.9460 Class0: 2, Class1: 1 0.83 

SMOTENM1 

1 0.9460 Class0: 3, Class1: 2 
SMOTE: 0.69 

NM1: 0.72 

2 0.9458 Class0: 3, Class1: 2 
SMOTE: 0.67 

NM1: 0.72 

3 0.9458 Class0: 3, Class1: 2 
SMOTE: 0.69 

NM1: 0.75 

SMOTENM2 

1 0.9458 Class0: 3, Class1: 2 
SMOTE: 0.70 

NM2: 0.71 

2 0.9457 Class0: 3, Class1: 2 
SMOTE: 0.69 

NM2: 0.70 

3 0.9457 Class0: 3, Class1: 2 
SMOTE: 0.68 

NM2: 0.70 

 

SMOTETomek + Cost-Sensitive Logistic Regression combination worked best for 

scenario 2.  

The baseline F1-score of 0.9444 is could not be surpassed even 1% for scenario two. 

This is happened because the imbalance between minority class and majority class 

for scenario 2 is very slight. It can be concluded that the effectiveness of the 

imbalance learning techniques loses its effectiveness when the degree of imbalance 

is lessened. 
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It is also can be seen that weight hyperparameter on most of the cases optimized at 

0:3, 1:2 which is actually the original ratio of the data at hand. Additionally, it is 

important to state that minority : majority class ratio for scenario is 0.40 / 0.60 = 

0.66. Especially for SMOTENM1 and SMOTENM2 predictive models’ ratio 

hyperparameters were optimized at a very close point to 0.66. 

5.5.3 Scenario 3 – 20:80 Imbalance Ratio with 20 Independent Variables 

Scenario 3 showcases a balance between scenario 1 (extreme imbalance) and 

scenario 2 (mild imbalance) again 20 features and 20000 examples are used for this 

scenario. 16000 of the examples belong to the majority class and 4000 of them 

belong to the minority class. The baseline F1-score is 0.931. The best results that 

were obtained is given below. 

 

 Table 5.18 Best Scores Obtained by Imbalanced Learning Techniques, Scenario 3 

 Rank F1 Score Class Weights Minor / Major 

SMOTE 

1 0.9323 Class0: 3, Class1: 2  0.41 

2 0.9322 Class0: 2, Class1: 1  0.55 

3 0.9321 Class0: 3, Class1: 2 0.40 

SMOTETomek 

1 0.9323 Class0: 7, Class1: 3   0.47 

2 0.9322 Class0: 2, Class1: 1  0.53 

3 0.9321 Class0: 2, Class1: 2 0.42 

SMOTENM1 

1 0.9329 Class0: 1, Class1: 1 
SMOTE: 0.30 

NM1: 0.33 

2 0.9329 Class0: 1, Class1: 1 
SMOTE: 0.29 

NM1: 0.36 

3 0.9329 Class0: 1, Class1: 1 
SMOTE: 0.29 

NM1: 0.33 
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SMOTENM2 

1 0.9326 Class0: 1, Class1: 1 
SMOTE: 0.28 

NM2: 0.30 

2 0.9324 Class0: 1, Class1: 1 
SMOTE: 0.29 

NM2: 0.31 

3 0.9322 Class0: 1, Class1: 1 
SMOTE: 0.26 

NM2: 0.28 

 

All models surpassed the baseline model performance but very slightly (only 3 rd 

decimal changed). That strengthens the conclusion that  specifically in extreme 

imbalance scenarios, the importance of imbalanced learning techniques become 

more prominent. Best performing model was found to be SMOTENM1 + Cost-

Sensitive Logistic Regression. It is important to note that, the minority : majority 

ratio for scenario 3 is 20 / 80 = 0.25. The optimum ratio hyperparameters do not far 

away from this value especially for SMOTENM1 and SMOTENM2 models. 

Considering that the default ratio hyperparameter is 1 which makes the density of 

minority and majority class equal, it can be said that default hyperparameters offer 

results which are far less optimal. 

5.5.4 Scenario 4 – 1:99 Imbalance Ratio with 4 Independent Variables 

 This scenario is created to examine the results when the number of independent 

variables is decreased. The baseline F1-score for this scenario is 0.976. Best results 

attained by Monte Carlo simulation can be seen below. 

 

 

   

Table 5.18 continued 



 

 
99 

Table 5.19 Best Scores Obtained by Imbalanced Learning Techniques, Scenario 4 

 Rank F1 Score Class Weights Minor / Major 

SMOTE 

1 0.9845 Class0: 4, Class1: 1  0.08 

2 0.9845 Class0: 4, Class1: 1  0.09 

3 0.9845 Class0: 4, Class1: 2 0.1 

SMOTETomek 

1 0.9845 Class0: 4, Class1: 1   0.06 

2 0.9845 Class0: 4, Class1: 1  0.08 

3 0.9845 Class0: 4, Class1: 1 0.09 

SMOTENM1 

1 0.9872 Class0: 2, Class1: 3 
SMOTE: 0.04 

NM1: 0.17 

2 0.9872 Class0: 2, Class1: 3 
SMOTE: 0.03 

NM1: 0.20 

3 0.9872 Class0: 1, Class1: 1 
SMOTE: 0.06 

NM1: 0.18 

SMOTENM2 

1 0.9869 Class0: 3, Class1: 2 
SMOTE: 0.04 

NM2: 0.08 

2 0.9845 Class0: 3, Class1: 2 
SMOTE: 0.04 

NM2: 0.09 

3 0.9845 Class0: 7, Class1: 3 
SMOTE: 0.05 

NM2: 0.13 

 

Baseline score is surpassed by all predictive models given in Table 5.19. The 

difference between scenario 1 and 4 is that the results are much higher in scenario 4 

even though the number of examples and the imbalance ratio is same. This is caused 

by the difference in the number of independent variables. Scenario 1 has 20 features 

as per in scenario 2 and 3 but scenario 4 has only 4 independent variables. This 

decreases the complexity of the dataset and acquiring high scores are easier on less 

complex datasets.  
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CHAPTER 6 

 

6  DISCUSSION AND CONCLUSION 

This study is conducted under the scope of finding an answer to the question: “What 

are the state of art methods for imbalanced classification and which combinations of 

these methods yields best results in extremely imbalanced real-world data?” The 

real-world data used for this study chosen from the field of basketball. The dataset 

is composed by the National Collegiate Athletic Association Men’s Basketball 

League player statistics from 2008 up to 2022. The dataset contains 21422 unique 

players. 20696 of them do not drafted by NBA Teams and 726 of them are drafted 

by the NBA Teams. The draft status of the player was the target variable and other 

48 player statistics variable was used as predictor variables. These numbers are the 

numbers achieved after preprocessing steps. 

The target variable, which shows the draft status of the college basketball player has 

2 classes. Drafted and non-drafted. By looking at numbers above, it can be calculated 

that only 3.389% of the players were drafted. On the other hand, remaining 96.611% 

belongs to the majority class which causes an extreme imbalance between class 

labels.  

Before doing any experiments to find out which method or combinations of methods 

works best, the evaluation metric which was used throughout the study had been 

chosen with the help of literature and critical thinking. Accuracy is one of the most 

common evaluation metrics in the world of data science but in occasions of extreme 

class imbalance, it gives unreliable results. A no skill model which only predicts the 
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majority class would score 0.966 in accuracy with the dataset used in this study. This 

made finding another metric a necessity. Since most of the problem domains which 

contain imbalanced class labels inherently like fraud detection, e-mail spam 

detection, anomaly detection, oil spill detection, etc. most important class label is the 

minority class, using a metric focuses on the minority class was aimed in the study. 

Precision and Recall metrics are a good way to show how a model predict the 

minority class. He and Ma in their book published in 2013 mentioned that increasing 

recall without decreasing prediction is the main focus of imbalanced learning but 

these two metrics often times have an inverse relationship.  

F1 score is the harmonic mean of Precision and Recall metrics which was chosen as 

the evaluation metric of the study. In order to mitigate the adverse effects of class 

imbalance, there are some techniques developed in literature. These techniques were 

used by themselves and in compliance with each other to find the best combination 

for the extremely imbalanced real-world dataset used in this study. First experiments 

were done by using baseline models in order to find out which default learning model 

fits best to the current form of the dataset. Logistic Regression and SVM provided 

the best results in these experiments. The F1 score of Logistic Regression and SVM 

was 0.723. Following experiments used oversampling and undersampling techniques 

also their combinations. The default hyperparameters of oversampling techniques 

provided significantly less scores than the scores obtained by using no additional 

sampling technique. For example, Logistic Regression baseline score dropped from 

0.723 to 0.596. Most of the sources in literature offers oversampling techniques to 

balance the minority and majority class in order to achieve better prediction 

performance which does not match with the results obtained. Then a grid search was 

applied to find best hyperparameters. Best minority / majority ratio hyperparameter 

for oversampling techniques were found between 0.07 and 0.08. Compared to the 

default hyperparameter of class ratio which is 1.0, optimum ratio hyperparameters 

are significantly less. Weiss and Provost (2001) achieved similar findings with 

different imbalanced datasets. In the study, the optimum minority / majority ratio 

found closer to the original ratio of classes which is quite different from ratio of 1 
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where minority and majority class frequencies matched. This can be concluded by 

this experiment that for extreme imbalance scenarios as in this study, default ratio 

hyperparameter which makes the frequency of each class equal does not work. Same 

approach was applied for the undersampling techniques which allow one to change 

the class ratio hyperparameter like versions of Near Miss algorithm. Optimum ratio 

hyperparameter was found between 0.07 and 0.08 again. Also, combinations of 

Oversampling and Undersampling also worked best with ratio hyperparameters 

between the range [0.06, 0.11]. These results ensure that grid search for optimum 

hyperparameters of Sampling techniques have utmost importance. 

Following phase of the experiments, sampling strategies aforementioned combined 

with cost-sensitive learning. In this part, grid search applied to find the best class 

weight hyperparameter for learning algorithm and best class ratio hyperparameter 

for sampling techniques. The general advice in literature is to use inverse values of 

original class distribution to balance class importance in predictive modelling. But  

the best performing models in the experiment showed that best combination of 

hyperparameters shows that even though sampling algorithm’s optimized ratio 

hyperparameters were between 0.07 to 0.13 which still indicates an imbalanced 

distribution, the corresponding optimum class weight hyperparameters found as 

{0:1, 1:1}, {0:2, 1:1}, {0:3, 1:2}, etc. which are offering a balanced weighting with 

more weight on majority side and different from the general advice in the literature. 

Lastly, in order to find the best probability threshold, probability threshold grid 

search is applied for 5 highest scoring models of the study. 2 of the best methods are 

SMOTENM2 algorithm which overlaps with the result which is attained from the 

original paper Jianping and Inderjeet published (2003) in which Near Miss algorithm 

were offered. In that article, the best performing version of Near Miss algorithm was 

also version 2. Optimum probability thresholds found around 0.50 and using 

optimum thresholds offered slight increase in F1 scores. The study consolidated 3 

different approaches (sampling, cost-sensitive, threshold moving) in Imbalanced 

Learning and acquired better results than single use of the above methods. 
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In addition to the real-world dataset experiments, Monte Carlo simulation is applied 

in order to fortify and generalize aforementioned findings. In order to achieve this, 

4 different scenario is simulated. For each scenario 20000 examples were used and 

Repeated stratified 10 fold cross validat ion with 50 repeats was applied which adds 

up to 500 different train test splits for each scenario. Scenario 1 represents an extreme 

scenario (1:99), scenario 2 is a balanced scenario with slight imbalance (40:60), 

scenario 3 is a medium imbalance which lays between scenario 1 and 2 (20:80). Last 

scenario is an extreme imbalance scenario but instead of 20 independent variables 

like first three scenario has, last scenario has only 4 independent variables.  

Scenario 1 and 4 has the same imbalance ratio which is 1:99. Both of the scenarios 

yield very similar findings with real-world data. 

The statement of default ratio hyperparameters which equalize both classes do not 

work well for extreme imbalance cases is supported by the results obtained from 

Monte Carlo simulations of scenario 1 and 4, which simulates extreme imbalance 

cases. Optimum minority : majority hyperparameters found to be between 0.08 to 

0.2 where the default hyperparameter is equal to 1. This also supports the statement 

made in this study that small increases in minority : majority are enough to optimize 

the predictive performance of the imbalanced classification model.  

The general advice for cost sensitive learning class weight hyperparameter is to use 

the inverse weights of the original minority : majority ratio as it was stated in the 

study. Extremely imbalanced real-world dataset experiments did not supported that 

approach, additionally the optimum weight hyperparameters put more weight on the 

majority class and less on minority class and somet imes a balanced class weight 

distribution found to be the best choice. 

The contributions of the study can be listed as follows: 

• First scientific study that uses NCAA College Basketball league Player 

Statistics Dataset 
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• The study proposed combining SMOTE, Near Miss, Cost-Sensitive Learning 

and Threshold Moving and achieved successful results for extreme 

imbalanced classification. 

• The study proved that default minority : majority ratio which is 1 does not 

work well especially with imbalanced cases. This is an overlooked aspect in 

Imbalanced Learning.  

• The study proved wrong the general advise of setting cost-sensitive learning 

class weight hyperparameters according to the inverse of the minority : 

majority ratio. (setting majority weight 2 and minority weight  8 for 20:80 

minority : majority ratio) 
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APPENDICES 

A. Cross Validation F1 Score Box Plots of Baseline Models with Standardized 

Variables 
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B. Cross Validation G-Mean Scores of Baseline Models with Standardized 

Variables 
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C. Cross Validation Accuracy Scores of Baseline Models with Standardized 

Variables 
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D. Cross Validation F1 Scores of Baseline Models with Normalized Variables 
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E.  Cross Validation G-Mean Scores of Baseline Models with Normalized 

Variables 
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F.  Cross Validation Accuracy Scores of Baseline Models with Normalized 

Variables 
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G. Cross Validation F1 Scores of Baseline Models with 13 Principal 

Components 
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H. Cross Validation G-Mean Scores of Baseline Models with 13 Principal 

Components 
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I. Cross Validation Accuracy Scores of Baseline Models with 13 Principal 

Components 
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J. Sampling Techniques Performances with Logistic Regression Algorithm 

 

 

 


